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Abstract Collaborative filtering is a popular method for personalizing product recommen-
dations. Maximum Margin Matrix Factorization (MMMF) has been proposed as one suc-
cessful learning approach to this task and has been recently extended to structured ranking
losses. In this paper we discuss a number of extensions to MMMF by introducing offset
terms, item dependent regularization and a graph kernel on the recommender graph. We
show equivalence between graph kernels and the recent MMMF extensions by Mnih and
Salakhutdinov (Advances in Neural Information Processing Systems 20, 2008). Experimen-
tal evaluation of the introduced extensions show improved performance over the original
MMMF formulation.

Keywords Collaborative filtering · Structured estimation · Recommender systems

1 Introduction

Collaborative filtering has gained much attention in the machine learning community due to
its applications in electronic commerce sites such as those of Amazon, Apple and Netflix.
Such sites typically offer personalized recommendations to their customers. The quality of
these suggestions is crucial to the overall success, since good recommendations will increase
the propensity of a purchase.
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However, suggesting the right items is a highly nontrivial task: (1) There are many items
to choose from. (2) Customers are willing to consider only a small number of recommenda-
tions (typically in the order of ten). Collaborative filtering addresses this problem by learning
the suggestion function for a user from ratings provided by this and other users on items.

The known data can be thought of a sparse n × m matrix Y of rating/purchase informa-
tion, where n denotes the number of users and m is the number of items. In this context, Yij

indicates the rating of item j given by user i. Typically, the rating is given on a five star scale
and thus Y ∈ {0, . . . ,5}n×m, where the value 0 indicates that a user did not rate an item. In
this sense, 0 is special since it does not indicate that a user dislikes an item but rather that
data is missing.

Related work A common approach to collaborative filtering is to fit a factor model to the
data. For example by extracting a feature vector for each user and item in the data set such
that the inner product of these features minimizes an explicit or implicit loss functional
(e.g. Hoffman 2004 following a probabilistic approach). The underlying idea behind these
methods is that both user preferences and item properties can be modeled by a number of
factors.

The basic idea of matrix factorization approaches is to fit the original Y matrix with
a low rank approximation F . More specifically, the goal is to find such an approximation
that minimizes the sum of the squared distances between the known entries in Y and their
predictions in F . One possibility of doing so is by using a Singular Value Decomposition
of Y and by using only a small number of the vectors obtained by this procedure. In the
information retrieval community this numerical operation is commonly referred to as Latent
Semantic Indexing.

Note, however, that this method does not do justice to the way Y was formed. An entry
Yij = 0 indicates that we did not observe a (user,object) pair. It does, however, not indicate
that user i disliked object j . In (Srebro and Jaakkola 2003), an alternative approach is sug-
gested which is the basis of the method described in this paper. We aim to find two matrices
U and M where U ∈ Rn×d and M ∈ Rd×m such that F = UM with the goal to approximate
the observed entries in Y rather than approximating all entries at the same time.

In general, finding a globally optimal solution of the low rank approximation problem
is unrealistic: in particular the approach proposed by (Srebro and Jaakkola 2003) for com-
puting a weighted factorization, which is relevant in collaborative filtering settings, requires
semidefinite programming which is feasible only for hundreds, at most, thousands of terms.
Departing from the goal of minimizing the rank, Maximum Margin Matrix Factorization
(MMMF) aims at minimizing the Froebenius norms of U and M , resulting in a set of con-
vex problems when taken in isolation and thus tractable by current optimization techniques.
It was shown in (Srebro et al. 2005; Srebro and Shraibman 2005) that optimizing the Froebe-
nius norm is a good proxy for optimizing the rank in its application to model complexity
control. Similar ideas based on matrix factorization have been also proposed in (Salakhutdi-
nov and Mnih 2008; Takács et al. 2007).

Recently (Weimer et al. 2008) proposed to extend the general MMMF framework in
order to minimize structured (ranking) losses instead of the sum of squared errors on the
known ratings. Key in the reasoning is that collaborative filtering is often at the heart of
recommender systems. For those, only the ranking of unrated items in terms of the user
preferences matter. To enable effective optimization of the structured ranking loss, a novel
optimization technique (Smola et al. 2008) was used to minimize the loss in terms of the
Normalized Discounted Cumulative Gain (NDCG).
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Our contribution Building upon the results outlined above, we introduce a number of ex-
tensions to the these MMMF models.

− An efficient means of computing the gradient in multiclass ordinal regression.
− A bias for movies and users to deal with heterogeneity of movies and users.
− An automatic adaptive regularization scheme which can deal with the varying number of

movies per user and likewise users per movie.
− A graph kernel that captures similarities between users and items in the recommender

graph in the spirit of (Salakhutdinov and Mnih 2008; Basilico and Hofmann 2004). We
prove that both methods are essentially equivalent and equal to a graph kernel on the
recommender graph.

For each of these extensions, we show how they can be integrated into the MMMF frame-
work such that structured estimation as proposed in (Weimer et al. 2008) is still feasible.

The paper is organized as follows: Sect. 2 describes the general MMMF model, its gen-
eralization to structured estimation and the use of state-of-the-art optimization methods to
train the model. Section 3 describes our extensions to that model. In Sect. 4, we discuss our
experimental evaluation and Sect. 5 concludes the paper with remarks on future work.

2 Maximum margin matrix factorization

2.1 Optimization problem

MMMF computes a dense approximation F of the sparse matrix Y which forms the training
data. The approximation is based on the modeling assumption that any particular rating of
item j by user i is a linear combination of item and user features. Thus, the approximation
can be written as F = UM . Here, Ui∗ represents the feature vector for user i and M∗j is the
feature vector for item j . The predicted rating of item j by user i is then the inner product
between these feature vectors:

Fij = 〈Ui∗,M∗j 〉.
Finding the appropriate matrices U and M is achieved by minimizing the regularized loss
functional where the Froebenius norm (‖U‖2

F = trUU�) of the U and M matrices is used
for capacity control and thus overfitting prevention. The Froebenius norm has been intro-
duced to the MMMF framework and shown to be a proper norm on F (Srebro and Shraib-
man 2005). This leads us to the following optimization problem:

minimize
U,M

L(F,Y ) + λm

2
‖M‖2

F + λu

2
‖U‖2

F . (1)

Here λm, λu are the regularization parameters for the M and U matrix respectively and
F = UM . Moreover, L(F,Y ) is a loss measuring the discrepancy between Y and F .

The optimization problem can be solved exactly by using a semidefinite reformula-
tion (Srebro et al. 2005). However, this dramatically limits the size of the problem to several
thousand users/movies. Instead, we exploit the fact that the problem is convex in U and M

respectively when the other variables are fixed to perform subspace descent (Rennie and
Srebro 2005).
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2.2 The loss

Squared loss In the original MMMF formulation, L(F,Y ) was chosen to be the sum of
the squared errors (Srebro et al. 2005):

L(F,Y ) = 1

2

n∑

i=0

m∑

j=0

Sij (Fij − Yij )
2 where Sij =

{
1 if user i rated item j,

0 otherwise.
(2)

This loss decomposes for the non zero elements of Y and consequently it is amenable to ef-
ficient minimization by repeatedly solving a linear system of equations for each row/column
of U and M separately (i.e. in parallel)—the objective function in (1) is convex quadratic in
U and M respectively whenever the other term is fixed.

The gradient of L(F,Y ) with respect to F can be computed efficiently, since ∂Fij
L(F,Y )

= SijFij − Yij . This means that we have

∂F L(F,Y ) = S.∗(F − Y ) (3)

where .∗ implies element-wise multiplication of S with F − Y . In other words, the gradient
of the loss is a sparse matrix.

Non separable loss This decomposition into losses, depending on Yij and Fij alone, fails
when dealing with structured losses that take an entire row of predictions, i.e. all predictions
for a given user into account. Such losses are closer to what is needed in recommender
systems, since users typically want to get good recommendations about which movies they
are interested in. A fairly accurate description of which movies they hate is probably less
desirable. The recent paper (Weimer et al. 2008) describe an optimization procedure which
is capable of dealing with such problems. In general, a non separable loss takes on the
following form:

L(F,Y ) :=
n∑

i=1

l(Fi∗, Yi∗). (4)

Gradients of L(F,Y ) decompose immediately into ∂Fi∗ l(Fi∗, Yi∗). This allows for efficient
gradient computation.

Ordinal loss We now discuss an extension of a common ranking loss, namely the ordinal
regression score, as suggested in (Herbrich et al. 2000). For simplicity of notation we only
study a row-wise loss l(f, y), where we assume that f := Fi∗ and y := Yi∗ have already
been compressed to contain only nonzero entries in Yi∗ with the corresponding entries of
Fi∗ having been selected accordingly.

Assume that y is of length m containing mj movies of score j , that is
∑

j mj = m. For
a given pair of movies (u, v) we consider them to be ranked correctly whenever yu > yv

implies that also fu > fv . A loss of 1 is incurred whenever this implication does not hold.
That is, we count

∑

yu>yv

C(yu, yv){fu ≤ fv}. (5)

Here C(yu, yv) denotes the cost of confusing a movie with score yu with one of score yv .
Since there are n = 1

2 [m2 − ∑
j m2

j ] terms in the sum we need to renormalize the error by



Mach Learn (2008) 72: 263–276 267

Algorithm 1 (l, g) = l(f, y,C)

input Vectors f and y, score matrix C

output Loss l and gradient g

initialize l = 0 (loss) and g = 0 (gradient)
for i = 1 to n do

bi = 0 (lower counter) and ui = mi (upper counter)
end for
Let c = [f − 1

2 , f + 1
2 ] ∈ R

2m

Rescale C ← 2C/(m2 − ‖u‖2
2)

index = Argsort(c) (find overlaps between pairs)
for i = 1 to 2m do

j = index(i) mod m and z = yj

if index(i) ≤ m (from the first half) then
for k = 1 to z − 1 (we should be better than those) do

l ← l − C(k, z)ukcj and gj ← gj − C(k, z)uk

end for
bz ← bz + 1 (there are now bz + 1 elements below us)

else
for (they should be better than us) k = z + 1 to n do

r ← r + C(z, k)bkcj+m and gj ← gj + C(z, k)bk

end for
uz ← uz − 1 (we’ve just seen one more term from above)

end if
end for

n in order to render losses among different users comparable. Moreover, we need to impose
a soft-margin loss on the comparator {fu ≤ fv} to obtain a convex differentiable loss. This
yields the loss

l(f, y) = 2

[
m2 −

∑

j

m2
j

]−1 ∑

yu>yv

C(yu, yv)max(0,1 − fu + fv). (6)

The gradient ∂f l(f, y) can be computed in a straightforward fashion via

∂f l(f, y) = −2

∑
yu>yv

C(yu, yv)

m2 − ∑
j m2

j

. (7)

In general, computing losses using preferences such as (6) is an O(m2) operation. However,
we may extend the reasoning of (Joachims 2006) to more than binary scores to obtain an
O(m logm) algorithm instead. Algorithm 1 relies on sorting f before taking sums. It uses
the decomposition of the soft margin loss via

max(0,1 − fu + fv) = max(0, (fv + 0.5) − (fu − 0.5)) = max(0, cv+m − cv)

where c = [f − 0.5, f + 0.5] to disentangle upper and lower bounds. It then traverses the
sorted list of c to check for how many terms an upper or lower bound is violated by means
of auxiliary counters b and u.
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2.3 Optimization

Although (1) is not jointly convex in U and M , it is still convex in U if M is kept fixed and
convex in M if U is kept fixed. We thus resort to alternating subspace descent as proposed
by (Rennie and Srebro 2005) by keeping U fixed and minimizing over M and repeating the
process for M with U fixed. We have the following procedure:

repeat
For fixed M minimize (1) with respect to U .
For fixed U minimize (1) with respect to M .

until no more progress is made or a maximum iteration count is reached.

While this approach does not ensure that a global minimum is reached, it proves to be rather
efficient and scalable for problems of up to 108 nonzero entries in Y (Netflix) (Weimer et al.
2008).

Our implementation uses a bundle method solver for the two optimization steps over U

and M . Recently, bundle methods have been introduced with promising results for optimiz-
ing regularized risk functions in supervised machine learning (Smola et al. 2008). Bundle
methods are especially suited to structured output estimation problems as they require rela-
tively few function and gradient computations which can be costly in the structured estima-
tion setting (Tsochantaridis et al. 2005), while they can be also used to minimize non-smooth
loss functions where only sub-differentials are available.

The key idea behind bundle methods is to compute successively improving linear lower
bounds of an objective function through first order Taylor approximations as shown in Fig. 1.
Several lower bounds from previous iterations are bundled in order to gain more information
on the global behavior of the function. The minimum of these lower bounds is then used as a
new location where to compute the next approximation, which leads to increasingly tighter
bounds and convergence.

The main computational cost in using the bundle method solver is the computation of the
gradients with respect to M and U . Using the chain rule yields

∂ML(F,Y ) = U�∂F L(F,Y ) and ∂UL(F,Y ) = [∂F L(F,Y )]�M. (8)

This computation is easily parallelizable, since terms in ∂F L(F,Y ) with respect to each
user can be computed separately.

We assume that the loss decomposes per user. Thus, we can optimize U by optimizing
each row of U on its own as shown in Algorithm 2. Note that we effectively construct and
solve a regularized risk model for each user for a dense data matrix X and parameters w.
On the other hand, when minimizing with respect to M we need to deal with the entire loss
jointly. The main issue to solve is to compute the loss and its gradient with respect to M .

Fig. 1 A convex function (solid) is bounded from below by Taylor approximations of first order (dashed).
Adding more terms improves the bound
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Algorithm 2 Optimization over U

input Matrix U and M , data Y

output Matrix U

for i = 1 to n do
Select idx as the nonzero set of Yi∗
Initialize w = Ui∗
Ui,idx = argminw l(wMidx,∗, Yi,idx) + λu

2 ‖w‖2

end for

Algorithm 3 Computation of ∂ML

input Matrix U and M , data Y

output ∂ML = D�M

for i = 1 to n do
Update w ← Ui∗
Find index ind where Yi∗ 
= 0
X ← M[ind, :]
Update Di∗ ← ∂F L(wX,Yi∗[ind])

end for
return ∂ML = D�M

Algorithm 3 shows an efficient way to compute the gradient which decomposes again for all
users besides the final multiplication.

3 Extensions

So far we described a number of practical implementation details and extensions in the
context of the loss function. We now discuss extensions of the model to take prior knowledge
about the function class into account.

Offset Individual users may have different standards when it comes to rating movies. For
instance, some users may rarely award a 5 while others are quite generous with it. Likewise,
movies have an inherent quality bias. For instance, ‘Plan 9 from Outer Space’ will probably
not garner high ratings with any movie buff while other movies may prove universally popu-
lar. This can be taken into account by means of an offset per movie. This can be incorporated
via

Fij = 〈Ui∗,Mj∗〉 + ui + mj . (9)

Here u and m are bias vectors for movies and users alike. In practice, we simply extend
the dimensionalities of U and M by one for each bias while pinning the corresponding coor-
dinate of the other matrix to assume the value of 1. In this form no algorithmic modification
for the U and M optimization is needed. The computational cost of this extension is near
zero, as the feature vectors of the convex optimization problem are extended by only one or
two dimensions.

Please note that this offset is different from a simple normalization of the input data and
is not meant to replace preprocessing procedures altogether. The offset is learned for the loss
function in use and for each user and movie, while it would be tricky to find a normalization
that does cater for both appropriately at the same time.
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Adaptive regularization Fixing a single regularization parameter for movies and users re-
spectively is not a very effective choice. For instance, estimation for a user who has seen
very few movies will likely suffer from overfitting unless heavily regularized. On the other
hand, for users who have rated lots of movies, we should be more gentle in terms of regu-
larization. Likewise, the number of ratings per movie varies widely and the regularization
should take this into account.

Those issues can be dealt with by sample-size adaptive regularization for both movies
and users. Denote by Du and Dm diagonal matrices corresponding to movies and users.
Setting Du

ii = n−α
i and DM

jj = m−α
j where ni denotes the number of movies user i has rated

and mj denotes the number of users which have rated movie j , we obtain a sample size
dependent regularizer as follows:

minimize
U,M

L(UM,Y ) + λm

2
trM�DmM + λu

2
trU�DuU.

In our experiments we found that α = 0.5 provides best generalization performance. This is
equivalent to the regularization scales provided in a maximum a posteriori setting where the
log-prior is fixed whereas the evidence scales linearly with the number of observations.

As the computation for this scaling can be done in advance, the computational cost of
the adaptive regularizer is not significant when compared to the overall runtime. The needed
statistics can even be pre-computed and reused in many experiments.

Graph kernels So far we ignored a crucial piece of information, namely the fact that the
ratings themselves are not random. For instance, knowing that a user rated ‘Die Hard’, ‘Die
Hard 2’, and ‘Top Gun’ makes it likely that this user is interested in action movies. This
information can be gained without even looking at the score matrix Y . One would expect
that we should be able to take advantage of this structural information in addition to the
actual scores.

One possibility, proposed by (Basilico and Hofmann 2004) is to use the inner product
between the movies two users rent as a kernel for comparing two different users. Denote by
Sij = {Cij > 0}. In this case they define the kernel between users i and i ′ to be 〈Si∗, Si′∗〉.
It is well known that such a model is equivalent to using a linear model with user-features
given by S. We can use this to improve the user matrix U to U + SA for a suitably chosen
feature matrix A.

Independently, (Salakhutdinov and Mnih 2008) recently developed a related line of
thought by assuming that the user matrix is given by U + S̄A, where U and A are nor-
mally distributed and S̄ is a row-normalized version of S, that is S̄i∗ = ‖Si∗‖−1

1 Si∗. While
their optimization strategy is very different (they use Markov Chain Monte Carlo sampling),
it should already be clear at this point that the outcome is very similar to that of (Basilico
and Hofmann 2004).

We now show that both approaches, which are approximately equivalent (barring the
normalization of S to S̄), are also equivalent to the use of graph kernels on the bipartite
ranking graph defined between users and movies. For this purpose we require the following
lemma:

Lemma 1 Denote by f : R
n → R some function and let A ∈ R

n×d . Moreover, let U ∈ R
n×d

and S ∈ R
n×m. Then the following problems are equivalent:
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minimize
U,A

f (V ) + ‖U‖2 + ‖A‖2 (10)

minimize
V

f (V ) + U�(1 + SS�)−1U. (11)

Proof Denote by (U ∗,A∗) the optimal solution of (10). Clearly in this case for V := U ∗ +
SA∗ the optimization problem

minimize
A

f (V ) + ‖V − SA‖2 + ‖A‖2 (12)

needs to have A∗ as its solution. What remains is to express A as a function of V and to
show that in this case (10) and (11) are equivalent. Taking derivatives of (11) with respect to
A yields

∂A[‖V − SA‖2 + ‖A‖2] = 2S�(SA − V ) + 2A.

Hence the gradient of the objective function vanishes for A∗ = (1 + S�S)−1S�V . Plugging
this back into (11) yields the objective function

f (V ) + ‖[1 − S(1 + S�S)−1S�]V ‖2 + ‖(1 + S�S)−1S�V ‖2

= f (V ) + ‖(1 + SS�)−1V ‖2 + ‖S�(1 + SS�)−1V ‖2

= f (V ) + V �(1 + SS�)−1V.

Here we used the Sherman-Morrison-Woodbury identity to transform the second term in
the second line. The third term follows from the fact that left and right singular vectors
associated with S constitute the eigenvectors of (1 + SS�) and (1 + S�S) respectively.
Hence we may “push” S to the left in the third term. The last equality follows by direct
calculation. �

This lemma shows that the parameterization U + SA (or U + S̄A respectively) is equiv-
alent to using a kernel (1 +SS�)−1 as regularization. The latter is well known as the inverse
Laplacian kernel, since SS� encodes the undirected graph obtained by connecting all users
which watched the same movie. The connection strength in SS� denotes the number of
movies both users shared.

The net result of this reparameterization is that (10) is a computationally more efficient
way of dealing with such symmetries rather than computing the inverse of (1 + SS�). Since
we may have millions of users the latter would be computationally infeasible.

Note also the connection to the spectral theory of graphs (Smola and Kondor 2003): the
eigenvalues and eigenvectors of 1 + S̄S̄� are close to those of the bipartite graph Laplacian,
which can be used for clustering between movies and users respectively. This means that for
similar users and movies we end up using similar parameters respectively.

4 Experiments

To evaluate the extension described in Sect. 3 we performed experiments on the eachmovie
and movielens data sets. The data sets are summarized in Table 1.



272 Mach Learn (2008) 72: 263–276

Table 1 Data set statistics
Data set Users Movies Ratings

EachMovie 61265 1623 2811717

MovieLens 983 1682 100000

In order to compare the results to those in the literature, we evaluate our system using the
Normalized Discounted Cumulative Gain (NDCG) measure:

DCG(Yi∗,π)@k =
m∑

j=0

2Yiπ[j ] − 1

log2(j + 1)
,

NDCG(Yi∗,π)@k = DCG(Yi∗,π)@k

DCG(Yi∗,πs)@k
.

(13)

The permutation π is computed as the argsort of the predicted values: π = argsort (Fi∗).
The perfect permutation πs is the argsort of the true ratings given by the user: πs =
argsort (Yi∗). A NDCG of 1.0 indicates that the model sorts the movies in the same or-
der as the user. The parameter k is a cut-off beyond which the actual ranking does no longer
matter. This follows the intuition that typical recommender systems can only present a lim-
ited amount of items to the user. In all our experiments, we evaluated using NDCG@10.

Following (Yu et al. 2006) and (Weimer et al. 2008), we distinguish two different evalu-
ation scenarios: strong and weak generalization.

Weak generalization: The train set is built by sampling 10, 20 or 50 movies randomly from
the seen movies of each user. The ranking performance is than evaluated using the
NDCG@10 score on the remaining movies.

Strong generalization: The model is evaluated on users that were not present at training
time. We follow the procedure described in (Yu et al. 2006): Movies with less than
50 ratings are discarded. The 100 users with the most rated movies are selected as the
test set and the methods are trained on the remaining users. In evaluation, 10, 20 or 50
ratings from those of the 100 test users are selected. For those ratings, the user training
procedure is applied to optimize U . M is kept fixed in this process to the values obtained
during training. The remaining ratings are tested using the same procedure as for the
weak generalization.

It is important to note that in both cases, the system is evaluated on the vast majority of
movies. This mimics the true situation of a recommender system which always has more
unrated items to recommend than already rated items at its disposal. However, these evalu-
ation schemes cannot show the usefulness of the per user offset, as the number of items in
the train set is fixed for all users. To evaluate the influence of this extension, we performed
experiments following the weak evaluation scheme with exchanged train and test sets: The
system is tested on 10, 20 or 50 items per user and trained on the remaining items.

In all experiments, the regularization parameters were fixed and not formally tuned. The
dimension of U and M is fixed to d = 10 in all experiments. We did not observe significant
performance drop when compared to a value of d = 100 in (Weimer et al. 2008) or d = 30 in
(Salakhutdinov and Mnih 2008). Additionally, we present results only for the least squares
regression loss, as the emphasis is on the evaluation of the extensions to the original model.
All experiments were performed ten times with different random draws of the train and test
set from the data set. In total, we report results on 960 experiments.
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4.1 Results

Weak generalization Table 2 shows the results for the weak generalization setting. Overall
we can see that adding the offset term does improve the performance while enabling just the
Graph kernel does not seem to yield significant gains in performance. This can be attributed
to the fact that the impact of the graph kernel will be most profound in cases where users
have rated relatively few movies compared to the average user. An additional factor to take
into account is that due to computational time constraints we did not adjust the regulariza-
tion parameter for each configuration. This is particularly significant in the graph kernel
phase where we optimize over an additional set of parameters. Nevertheless we observe that
in some cases the graph kernel seems to bring significant performance particularly when
combined with the offset term. This leads us to believe that with proper parameter tuning,
the graph kernel can add significant performance increases.

Inverted weak generalization The results of this set of experiments Table 3, again confirm
our observations in the previous setting. The offset term along often combined with the
graph kernel or the adaptive regularization brings significant performance gains. Again we
have to note that the overall regularization parameters were not tuned for the individual
configurations.

Strong generalization For the strong generalization setting, we compare our results to
Gaussian Process Ordinal Regression (GPOR) (Chu and Ghahramani 2005) Gaussian
Process Regression (GPR), the collaborative extensions (CPR, CGPOR) as well as the orig-
inal MMMF implementation (Yu et al. 2006; Weimer et al. 2008). Table 4 shows our results
compared to the ones from (Yu et al. 2006).

For the Movielens data, our system with the offset and graph kernel extensions out-
performs the other systems we compare to. Additionally, the system with both extensions
performs consistently better than the ones with only one extension. On the Eachmovie data,
our system performs the best with the offset parameters enabled. it appears that the graph
kernel in the Eachmovie data set does not improve the performance but again this can be
attributed to a poor choice of the regularization parameters for this data set.

On both data sets, the results are very good in the strong generalization setting. This
is not as surprising as it may seem at first: In the strong generalization phase, our system
solves a convex problem for each test user in order to learn the right Ui∗ for that user. If

Table 2 The NGDC@10 accuracy over ten runs and the standard deviation for the weak generalization
evaluation

Method N = 10 N = 20 N = 50

EachMovie Plain 0.625 ± 0.000 0.639 ± 0.000 0.641 ± 0.000

Offset 0.646 ± 0.000 0.653 ± 0.000 0.647 ± 0.000

GraphKernel 0.583 ± 0.000 0.585 ± 0.000 0.590 ± 0.001

OffsetGK 0.576 ± 0.000 0.597 ± 0.000 0.580 ± 0.001

MovieLens Plain 0.657 ± 0.000 0.658 ± 0.000 0.686 ± 0.000

Offset 0.678 ± 0.000 0.680 ± 0.000 0.701 ± 0.000

GraphKernel 0.624 ± 0.001 0.644 ± 0.000 0.682 ± 0.000

OffsetGK 0.670 ± 0.001 0.681 ± 0.000 0.682 ± 0.000
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Table 3 The NGDC@10 accuracy over ten runs and the standard deviation for the inverted weak general-
ization evaluation

Method N = 10 N = 20 N = 50

EachMovie Plain 0.859 ± 0.000 0.731 ± 0.000 0.627 ± 0.000

Offset 0.859 ± 0.000 0.734 ± 0.000 0.631 ± 0.000

GraphKernel 0.837 ± 0.000 0.693 ± 0.000 0.553 ± 0.001

AdaReg 0.858 ± 0.000 0.729 ± 0.000 0.635 ± 0.000

AdaRegGK 0.832 ± 0.000 0.692 ± 0.000 0.578 ± 0.000

OffsetGK 0.832 ± 0.000 0.689 ± 0.000 0.587 ± 0.001

OffsetAdareg 0.859 ± 0.000 0.728 ± 0.000 0.637 ± 0.000

All 0.836 ± 0.000 0.702 ± 0.000 0.585 ± 0.000

MovieLens Plain 0.875 ± 0.000 0.750 ± 0.000 0.673 ± 0.000

Offset 0.886 ± 0.000 0.764 ± 0.000 0.703 ± 0.001

GraphKernel 0.845 ± 0.000 0.720 ± 0.001 0.667 ± 0.000

AdaReg 0.873 ± 0.000 0.736 ± 0.000 0.652 ± 0.001

AdaRegGK 0.835 ± 0.000 0.694 ± 0.001 0.645 ± 0.001

OffsetGK 0.882 ± 0.000 0.773 ± 0.000 0.703 ± 0.000

OffsetAdareg 0.874 ± 0.000 0.750 ± 0.000 0.681 ± 0.000

All 0.869 ± 0.000 0.730 ± 0.002 0.645 ± 0.005

the system learned reasonable features for the items in the weak generalization phase of this
evaluation, good results for the strong evaluation phase are to be expected. We believe that
this is an important benefit of our method in many applications, as it allows for fast accurate
predictions for new users without the need to retrain the whole system.

The variance over the ten runs on different data in all experiments is surprisingly low,
especially given the fact that we are optimizing a nonconvex function. The same is true for
the variance on the objective function. The low variance may mean that we always reach the
same local minimum or that this minimum is indeed a global one.

Overall, the experiments show that the performance of the basic model can be signifi-
cantly increased by the extensions proposed in this paper. Please note that we did not op-
timize the regularization parameters, which might improve the performance even further
particularly in the case of the graph kernel where an additional set of parameters is opti-
mized. Additional improvements are to be expected when applying other loss functions like
ordinal regression or the ranking losses as described in (Weimer et al. 2008). Both have
shown to yield better ranking performance, yet we could not evaluate them here as each loss
function would have added another 960 experiments.

5 Conclusion

In this paper, we have shown several extensions to the original MMMF model that add
up to recent advances in the optimization procedure and the losses. We introduced offset
terms, item dependent regularization and a graph kernel on the recommender graph. We
also showed that recent extensions to MMMF (Salakhutdinov and Mnih 2008) as well as
well known approaches (Basilico and Hofmann 2004) are both instances of our graph kernel
formulation.
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Table 4 The NGDC@10 accuracy over ten runs and the standard deviation for the strong generalization
evaluation.

Method N = 10 N = 20 N = 50

EachMovie Plain 0.615 ± 0.000 0.633 ± 0.000 0.636 ± 0.000

Offset 0.641 ± 0.000 0.647 ± 0.000 0.644 ± 0.000

GraphKernel 0.574 ± 0.000 0.581 ± 0.000 0.596 ± 0.000

OffsetGK 0.568 ± 0.000 0.594 ± 0.000 0.579 ± 0.000

GPR 0.4558 ± 0.015 0.4849 ± 0.0066 0.5375 ± 0.0089

CGPR 0.5734 ± 0.014 0.5989 ± 0.0118 0.6341 ± 0.0114

GPOR 0.3692 ± 0.002 0.3678 ± 0.0030 0.3663 ± 0.0024

CGPOR 0.3789 ± 0.011 0.3781 ± 0.0056 0.3774 ± 0.0041

MMMF 0.4746 ± 0.034 0.4786 ± 0.0139 0.5478 ± 0.0211

MovieLens Plain 0.587 ± 0.001 0.644 ± 0.001 0.630 ± 0.001

Offset 0.583 ± 0.000 0.444 ± 0.000 0.690 ± 0.000

GraphKernel 0.613 ± 0.000 0.634 ± 0.000 0.637 ± 0.001

OffsetGK 0.684 ± 0.000 0.691 ± 0.000 0.692 ± 0.000

GPR 0.4937 ± 0.0108 0.5020 ± 0.0089 0.5088 ± 0.0141

CGPR 0.5101 ± 0.0081 0.5249 ± 0.0073 0.5438 ± 0.0063

GPOR 0.4988 ± 0.0035 0.5004 ± 0.0046 0.5011 ± 0.0051

CGPOR 0.5053 ± 0.0047 0.5089 ± 0.0044 0.5049 ± 0.0035

MMMF 0.5521 ± 0.0183 0.6133 ± 0.0180 0.6651 ± 0.0190

The extensions have been introduced in a way that preserves recent extensions of MMMF
to structured loss (Weimer et al. 2008). Additionally, this still allows us to use state of the art
optimizers based on bundle methods which have recently been proposed for the regularized
risk minimization problem (Smola et al. 2008).

On all evaluated data sets in all evaluation settings, one combination of the proposed ex-
tensions yielded significantly improved results, even though we did not tune the parameters
of the model. Thus, even better results are to be expected in real world applications of this
method.

The software developed to evaluate the methods described in this paper will be available
on http://www.cofirank.org.
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