
Maximum Margin Matrix Factorization for Code
Recommendation

Markus Weimer
TU Darmstadt

Darmstadt, Germany
weimer@acm.org

Alexandros Karatzoglou
INSA de Rouen, LITIS

Rouen, France
alexis@ci.tuwien.ac.at

Marcel Bruch
TU Darmstadt

Darmstadt, Germany
bruch@cs.tu-
darmstadt.de

ABSTRACT
Code recommender systems ease the use and learning of soft-
ware frameworks and libraries by recommending calls based
on already present code. Typically, code recommender tools
have been based on rather simple rule based systems while
many of the recent advances in Recommender Systems and
Collaborative Filtering have been largely focused on rating
data. While many of these advances can be incorporated in
the code recommendation setting this problem also brings
considerable challenges of its own.

In this paper, we extend state-of-the-art collaborative fil-
tering technology, namely Maximum Margin Matrix Factor-
ization (MMMF) to this interesting application domain and
show how to deal with the challenges posed by this prob-
lem. To this end, we introduce two new loss functions to
the MMMF model. While we focus on code recommenda-
tion in this paper, our contributions and the methodology
we propose can be of use in almost any collaborative setting
that can be represented as a binary interaction matrix. We
evaluate the algorithm on real data drawn from the Eclipse
Open Source Project. The results show a significant im-
provement over current rule-based approaches.

Categories and Subject Descriptors
H3.3 [Information Search and Retrieval]: Information
filtering—Collaborative Filtering ; G3 [Probability and Statis-
tics]: Correlation and regression analysis

General Terms
Algorithms, Experimentation

Keywords
Collaborative Filtering, Matrix Factorization

1. INTRODUCTION
Properly used, software frameworks and libraries lower

the cost of software engineering, the time to market, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’09, October 23–25, 2009, New York, New York, USA.
Copyright 2009 ACM 978-1-60558-435-5/09/10 ...$10.00.

increase the quality of the final product. Apart from these
obvious advantages, software frameworks also impose usage
and programming patterns that can be particularly helpful
in large collaborative projects. Learning to use a new frame-
work is a time consuming task and thus programmers often
resort to example code. Example finding tools have been
proposed to aid in the retrieval of relevant examples.

More recently, the idea of code recommenders has been
proposed and investigated, e.g. in FrUiT[1]. These systems
are trained on databases of working code that uses frame-
works with the goal to assist the programmer by provid-
ing recommendations during programming. Ultimately, the
use of such systems promotes implicit learning i.e. “learn-
ing while doing”. The systems recommend calls to meth-
ods based on the context in which the recommendation is
made. In this paper, we will restrict ourselves to two con-
texts: (i) the class in which the recommended call shall be
placed and (ii) the method in which the recommended call
shall be placed. Essentially all systems studied in the liter-
ature use rule mining methods at their core.

On the other hand, much of the collaborative filtering lit-
erature recently focused on factor models such as variants
of the singular value decomposition (SVD). These models
have been shown to perform well in the rating setting where
given a (user, item) pair, a rating is predicted. Ratings on
items by users are usually assumed to be natural numbers.
However, in code recommender systems the available data
consists of calls to methods in contexts. This data seems to
be binary: given a (context,method) pair, predict whether
or not the method is called within this context. However,
the data is binary only with special semantics, as the ab-
sence of a call carries less information than its presence. We
can assume that most calls were placed on purpose while the
absence of a call can be attributed to different reasons, e.g.
explicit decisions by the programmer, harmless omissions or
those that constitute a bug.

Thus, the available data consists of positively labeled and
unlabeled (context,method) pairs. Data of this kind can
be referred to as dyadic interaction data. This type of data
does not only occur in code recommender settings, but also
in many more traditional recommender systems where e.g.
only user purchase information is available.

Contribution: We transfer the matrix factorization ap-
proach to dyadic interaction data. To this end, we built
upon our research on the Maximum Margin Matrix Factor-
ization approach [5] and extend it by introducing two new
loss functions. We demonstrate that these two loss functions
allow for a natural trade-off between recall and precision of

309

the results obtained by the recommender system. We evalu-
ate these algorithm improvements on real data available to
a code recommender system.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the Maximum Margin Matrix Factorization
approach as well as the two new loss functions. Section 3
contains our experimental evaluation. Section 4 concludes
the paper with an analysis and possible future research di-
rections.

2. MATRIX FACTORIZATION MODELING
Factor models and in particular matrix factorization meth-

ods are at the core of many successful recommender system
algorithms. In matrix factorization methods, the data is
contained in a sparse matrix Y ∈ Rn×m where Yi,j typicaly
indicates the rating of item j by user i . The basic idea of
matrix factorization is to fit this matrix Y with a low rank
approximation F . Here, F is computed as F = UM where
U ∈ Rn×d and M ∈ Rd×m. More specifically, the goal is to
find an approximation that minimizes a loss measure such as
the sum of the squared distances between the known entries
in Y and their predictions in F .

One way of doing this is to compute a Singular Value
Decomposition of Y and to use only a small number of the
vectors obtained by this procedure. Note, however, that this
method does not do justice to the way Y was formed, as it
ignores the sparsity of Y and assumes the sparse elements
of Y to have a constant value, typically 0 or some kind of
average value. In [3], an alternative approach is suggested in
that the aim is to find a factorization of Y in two matrices U
and M such that F = UM with the goal to approximate the
observed entries in Y rather than approximating all entries
at the same time.

Several methods to control the capacity of the model in
order to prevent overfitting have been proposed. Here, we
follow the Maximum Margin Matrix Factorization [4] ap-
proach where the Frobenius norm of U and M is used.

2.1 Optimization Problem
Above, we omitted one crucial step: how to find “good”

matrices U and M in the first place. Finding the appropriate
matrices U and M is achieved by minimizing the regularized
loss functional where the Frobenius norm (‖U‖2F = trUU>)
of the matrices U and M is used for capacity control. This
leads us to the following optimization problem:

minimize
U,M

L(F, Y) +
λm

2
‖M‖2F +

λu

2
‖U‖2F (1)

Here λm and λu are the regularization parameters for the
matrices M and U and the prediction F is computed as F =
UM . Moreover, L(F, Y) is a loss measuring the discrepancy
between Y and F . See below in Section 2.2 for a discussion
of appropriate loss functions.

The optimization problem (1) can be solved exactly by
using a semi definite reformulation as shown in [4]. However,
its computational complexity dramatically limits the size of
the problem to several thousand rows and columns in Y .
While the objective function (1) is not jointly convex in U
and M , it is still convex in U and M separately. Thus,
we can resort to the alternating subspace gradient descent
optimization procedure described in [5].

Generalization to new rows in Y : A common case in rec-

ommender systems in general and in our case in particular is
to predict the remaining items in a row: given some calls in a
context, compute a prediction for the remaining calls. In the
recommender literature, this is often referred to as the new
user problem. It is possible to extend Y by these new rows
and perform training as suggested above. However, this ap-
proach seems wasteful. Instead, we propose to optimize the
objective function (1) on the known data. It is plausible to
believe that M will not change significantly for a few new
rows in Y . Thus, we can compute a prediction f = uM for
a new row y by solving the following optimization problem:

minimize
u

l(f, y) +
λu

2
‖u‖2 (2)

Here, l(f, y) is the loss function defined on a single row. The
Frobenius norm decomposes per row to L2 norms, hence its
use as the regularizer for a single row.

2.2 The Loss Function
In the situation at hand, Yi,j indicates whether method j

has been called in context i. An entry of 0 does not neces-
sarily indicate an incompatibility of i and j but merely the
absence of a label. In that respect, our matrix factorization
problem has some similarities with the supervised machine
learning from positive and unlabeled data settings addressed
e.g. in [2].

Additionally, the data is highly unbalanced. There are
many more 0’s in the data than 1’s. Thus, minimizing the
squared error as typically done in factor models will not yield
good results in our scenario of dyadic interaction data: the
resulting predictions will be heavily biased towards 0.

We address these issues by introducing two new loss func-
tions to matrix factorization: the weighted soft margin loss
and the weighted logistic regression loss [2]. We will also
introduce the gradient of the loss with respect to F here as
it is needed for efficient optimization of the objective.

Weighted soft margin loss: The weighted soft margin loss
for matrix factorization can be defined as:

L(F, Y) =

nX
i=0

mX
j=0

max(0, 1− g(Yij)FijYij) (3)

This assumes that we code the calls in Y with 1 and the
non-calls with −1. The prediction function is the sign of the
entries in F . The loss vanishes for all i, j where Fi,j and
Yi,j have the same sign and ||Fi,j || ≥ 1. The weight of the
positive class is introduced via

g(x) =

(
g+ x > 0

1 else

The gradient of this loss with respect to F can be computed
as:

(δFL(F, Y))i,j =

(
0 if Yi,jFi,j ≥ 1

g(Yi,j)(−Yi,j) otherwise
(4)

Weighted logistic regression Often, one is not only inter-
ested in a binary decision but also in a probability thereof,
e.g. to allow for proper sorting and filtering of the recom-
mendations. In order to compute these probabilities, we
transfer the results on logistic regression from the supervised
machine learning setup to collaborative filtering and extend

310

them with a weight like for the soft margin loss above:

L(F, Y) =

n,mX
i,j=0

g(Yij) log (1 + exp (−FijYij))(5)

(δFL(F, Y))ij =
−g(Yij)Yij exp(−FijYij)

1 + exp (−FijYij)
(6)

A good initial value for the weight parameter g+ is the pro-
portion of positively labeled data in the training data. The
weight parameter provides an intuitive way of adjusting per-
formance properties of the algorithm and in particular the
level of precision and recall, as will become apparent in Sec-
tion 3.

3. EXPERIMENTS
In this section we detail the experimental setup, the eval-

uation process and present the results that allow us to assess
the performance of the system.

3.1 The data
We chose to evaluate our system on calls from the Eclipse

Integrated Development Environment to the User Interface
(UI) Framework used in Eclipse, the Standard Widget Toolkit
(SWT).

Data extraction: As mentioned above, we perform experi-
ments for two possible contexts of recommendation: Classes
and Methods. We used the Wala toolkit1 to extract the calls
from each method and class in Eclipse to SWT. These calls
are then recorded in a sparse matrix Y where Yi,j = 1 indi-
cates that a call to SWT method j was found in context i.

class A {

 void foo() {
 Button b = new Button();
 b.setText("text");
 Text t = new Text(..);
 t.setText(..);
 ..
 }
}

Bu
tt
on
.<
in
it
>(
)

Bu
tt
on
.s
et
Te
xt
()

Te
xt
.s
et
Te
xt
()

Te
xt
.<
in
it
>(
)

1 1 1 1 …

0 0 1 1 …

… … … … …

class A

class B

…

Y

Figure 1: From source code to binary vector

Figure 1 illustrates this process for class A as context. In
this class, four SWT methods are called. Each of these calls
is recorded in the row of Y that corresponds to class A. The
matrix also shows a hypothetical class B that contains only
two calls to SWT methods.

Data characteristics: We found 1, 557 methods in SWT
that have been called from Eclipse. We found 5, 642 methods
in Eclipse that call at least one method in SWT and 2, 733
classes in Eclipse that do so. The method data contains
52, 895 calls, for the class data we recorded 41, 369 calls.

Figure 2 shows the distribution of the number of calls per
class. The data for the method context shows the same
long tail distribution. We observe both a few classes with
many calls to SWT and many classes with only a few calls to
SWT. 24% of the classes in Eclipse call only a single SWT
method and two thirds of the classes invoke less than 15
SWT methods. These properties can be attributed to the
way modern object oriented software is constructed which

1http://wala.sf.net

80

100

120

140

C
A

LL
S

0

20

40

60

0 300 600 900 1200 1500 1800 2100 2400 2700

C

ECLIPSE CLASSES USING SWT

Figure 2: Histogram of the number of calls to SWT
per class in Eclipse

favors small components with small responsibilities. How-
ever, there exist more complex classes that use up to 130
different methods and unless their developers have a precise
understanding of the framework their application is unlikely
to function properly.

The distribution of the call frequencies shows a long tail
of methods that have been called very infrequently. On the
other hand, 2.5 % of the methods amount to 50 % of all the
recorded calls. A qualitative analysis revealed that the more
frequently called methods represent the core of the SWT
framework such as the UI classes.

Side Note: both of these long tail distributions are com-
monly seen in other recommender systems. There are some
users who buy or rate a lot while there is a long tail of in-
frequent users. The same is true for the items, some are
very popular and there is a long tail of items that are only
infrequently bought or rated.

3.2 Evaluation procedure
To evaluate our system, we simulated its use by a devel-

oper that asks the system for help after writing half the code
in a context. To evaluate this scenario, the system is trained
on 90 % of the data by minimizing the objective function (1)
to obtain M . Then, it is presented with half the known calls
per context in the remaining 10 % of the data. This forms
the input for the system which then minimizes the objec-
tive function (2) to predict additional calls for each context.
This output of the recommender system is evaluated using
the information retrieval measures F1, precision and recall.
We repeated this procedure 10 times for different random
samplings of the train data.

3.3 System Performance
Baseline: To evaluate the performance of our system,

we implemented a baseline recommender system based on
association rule mining. It was choosen as it is similar to
existing code recommender systems.

Results: For both the class and the method context, we
performed parameter tuning on one of the ten data splits for
optimal F1 score.

Table 1 shows the performance of the different loss func-
tions of our approach in comparison to the rule based base-
line. Please note that the unanswered cases, the cases for
which the systems don’t suggest any call, are generally fewer
for our system.

We observe that our algorithm with a logistic regression
loss performs best in terms of the F1 score, closely matched

311

Algorithm: Rules Softmargin Logistic
Method Context

F1 0.68± 0.01 0.73± 0.01 0.74± 0.01
Precision 0.83± 0.02 0.72± 0.02 0.82± 0.02
Recall 0.57± 0.01 0.75± 0.01 0.68± 0.02

Unanswered 144± 11 118± 11 124± 8
Class Context

F1 0.67± 0.02 0.73± 0.02 0.74± 0.02
Precision 0.79± 0.03 0.74± 0.02 0.78± 0.02
Recall 0.58± 0.02 0.73± 0.02 0.70± 0.02

Unanswered 56± 5 48± 10 50± 8

Table 1: Averaged results in terms of F1, precision
and recall over 10 runs. Note that the differences
in F1 between softmargin and logistic loss as well as
the difference in precision between rules and logistic
loss are not statistical significant

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(weight)

F1
Precision
Recall

Figure 3: F1, precision and recall for MMMF with
a soft margin loss for different value of the weight
parameter (on a natural log scale)

by the soft margin loss. Matrix factorization overall is sig-
nificantly better than the rule based approach in terms of
the F1 score. However, both loss functions exhibit differ-
ent performance characteristics. For the logistic regression
loss, recall and precision differ significantly while the per-
formance of the soft margin loss function is more balanced.
Note that precision and recall are sensitive to the value of
the positive weight. Thus, a desired balance between the two
measures can be easily achieved by tweaking this value. Fig-
ure 3 depicts the relation between the performance measures
and the weight parameter for our system with a soft margin
loss. As to be expected, the value of precision decreases as
the positive weight increases while the recall behaves in an
inverse manner. The weight parameter thus provides a way
of adjusting the performance of the system.

4. CONCLUSION
We have shown that MMMF, one of the focuses of recent

collaborative filtering research, can be used successfully for
the task of code recommendation by introducing two new
loss functions. One obvious future direction is to apply
the method to more traditional recommender systems set-
tings. Additionally, we will investigate the performance in
the multi-framework setting where recommendations shall
be made not only for a UI framework, but at the same
time for multiple concurrently used frameworks. Another
interesting question is whether the method or the class con-
text perform better from an user perspective. As we have
seen, prediction performance is virtually identical for both
of these contexts. Lastly, the domain provides a rich fea-
ture set which can be integrated into a hybrid recommender
approach. Code is well structured and thus offers well struc-
tured features. Class, control flow and other hierarchies pro-
vide an interesting field to study from the point of view of
feature hierarchies.
Software availability: The software developed for this pa-
per will be made available on http://www.cofirank.org.
Acknowledgements: Markus Weimer is funded under Grant
1223 by the German Science Foundation. Alexandros Karat-
zoglou was supported by a grant of the ANR-CADI project.
We gratefully acknowledge support by the Frankfurt Center
for Scientific Computing in running our experiments.

5. REFERENCES
[1] M. Bruch, T. Schäfer, and M. Mezini. FrUiT: IDE

support for framework understanding. pages 55–59,
2006.

[2] W. S. Lee and B. Liu. Learning with positive and
unlabeled examples using weighted logistic regression.
In Proceedings of the 20th International Conference on
Machine Learning (ICML 2003). AAAI Press, 2003.

[3] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In Proceedings of the 20th
International Conference on Machine Learning (ICML
2003), pages 720 – 727. AAAI Press, 2003.

[4] N. Srebro, J. Rennie, and T. Jaakkola.
Maximum-margin matrix factorization. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17, Cambridge, MA,
2005. MIT Press.

[5] M. Weimer, A. Karatzoglou, and A. Smola. Improving
maximum margin matrix factorization. Machine
Learning, 72(3), September 2008.

312

