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Abstract

Matrix factorization is a successful technique
for building collaborative filtering systems.
While it works well on a large range of prob-
lems, it is also known for requiring significant
amounts of storage for each user or item to
be added to the database. This is a prob-
lem whenever the collaborative filtering task
is larger than the medium-sized Netflix Prize
data.

In this paper, we propose a new model for
representing and compressing matrix factors
via hashing. This allows for essentially un-
bounded storage (at a graceful storage / per-
formance trade-off) for users and items to
be represented in a pre-defined memory foot-
print. It allows us to scale recommender sys-
tems to very large numbers of users or con-
versely, obtain very good performance even
for tiny models (e.g. 400kB of data suffice for
a representation of the EachMovie problem).

We provide both experimental results and ap-
proximation bounds for our compressed rep-
resentation and we show how this approach
can be extended to multipartite problems.

1 Introduction

Recommender systems are crucial for the success of
many online shops such as Amazon, iTunes and Net-
flix. Research on the topic has been stimulated by
the release of realistic data sets and contests. In the
academic literature, Collaborative Filtering is widely
accepted as the state-of-the-art data mining method
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for building recommender systems. Collaborative Fil-
tering methods exploit collective taste patterns found
in user transaction or rating data that web shops can
often easily collect while preserving privacy.

Matrix factorization models have attracted a large
body of work, such as (Takacs et al., 2009; Rennie
and Srebro, 2005; Weimer et al., 2008a; Hu et al.,
2008; Salakhutdinov and Mnih, 2008). Moreover, it
is one of the core techniques used in the Netflix Prize
Challenge, e.g. (Bell et al., 2007; Töscher and Jahrer,
2008). Factor models are based on the notion that the
predicted rating Fij of item j by user i can be written
as an inner product of item factors Mj ∈ Rd and user
factors Ui ∈ Rd via Fij = 〈Ui,Mj〉. Finding U and
M can be achieved by minimizing a range of different
(typically convex) distance functions l(〈Ui,Mj〉 , Fij)
between the predicted entries Fij and the given data.
The model is then used to predict the missing ratings,
each corresponding to a particular (user,item) pair.

One of the key problems of factor modes is that they
have linear memory requirements in the number of
users and items: For each user i, one vector Ui ∈ Rd
needs to be stored; similarly, for each item j, one vec-
tor Mj ∈ Rd needs to be stored. Most freely avail-
able datasets like the Netflix Prize data set, which
with roughly 108 known ratings constitutes one of the
biggest data sets available to academic research, can
fit comfortably in the main memory of a laptop.

The scaling in terms of users and items obscures an
important issue: while there may be some users and
items for which large amounts of data is available,
many items / users will only come with small amounts
of rating / feedback. Hence it is highly inefficient to
allocate an equal amount of storage for all items. This
can be addressed by sparse models, such as via `1 reg-
ularization, or topic models (Porteous et al., 2008) at
the expense of a significantly more complex optimiza-
tion setting and rather nontrivial memory allocation
procedures – we now need to store a list of sparse vec-
tors, requiring to store the index structure itself, the
footprint can only be controlled indirectly via regular-
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ization parameters, and the problem persists as users
and items are added to the database. Worst case, we
need disk access for every user, reducing throughput
to 200 users per second, assuming 5ms disk seek time.

As a consequence, many of the aforementioned mod-
els break for large scale matrix factorization problems:
some companies have 108 customers. In computational
advertising when treating each page as an entity of
its own we are faced with a similar number of ’users’
(Agarwal et al., 2007). This leads to an explosion in
storage requirements in a naive approach.

In this paper, we introduce hashing as an alternative.
Just like in the case of linear models (Weinberger et al.,
2009) we use a compressed representation for the fac-
tors (in this case the two parts of the matrix). We
show that it is the overall weight (the Frobenius norm)
of the factors that influences approximation quality of
the factorization problem, thus allowing us to store
large numbers of less relevant factors and less rele-
vant users / items easily. This also puts an end to the
problem of not having enough storage space to store a
sufficiently high-dimensional model.

Furthermore, we experiment with a range of different
loss functions beyond the Least Mean Squares loss (in
particular the ε-insensitive loss, a smoothed variant
thereof and Hubert’s robust loss) and we show that
stochastic gradient descent is well applicable to large
scale collaborative filtering problems.

• We present a hashing model for matrix factoriza-
tion with limited memory footprint.
• We use Hubert’s robust loss and an ε-insensitive

loss function for matrix factorization, thus allow-
ing for large margins.
• We integrate these two extensions into standard

online learning for matrix factorization.

Paper structure Section 2 discusses related work,
section 3 describes the general matrix factorization
problem, it introduces loss functions, and it discusses
online optimization methods. Section 4 shows how ma-
trices can be stored efficiently using hashing and it pro-
vides approximation guarantees for compressed mem-
ory representations. Experimental results are given in
section 5 and we conclude with a discussion.

2 Related Work

Factor models and more specifically matrix factoriza-
tion methods have been successfully introduced to Col-
laborative Filtering and form the core of many suc-
cessful recommender system algorithms. The basic
idea is to estimate vectors Ui ∈ Rd for each user i
and Mj ∈ Rd for every item j of the data set so that

their inner product minimizes an explicit (Srebro et al.,
2005) or implicit loss function between the predic-
tions and the train data ((Hoffman, 2004) introduced a
probabilistic approach to factor models). Such factor
models are statistically well motivated since they arise
directly from the Aldous-Hoover theorem of partial ex-
changeability of rows and columns of matrix-valued
distributions (Kallenberg, 2005).

In matrix factorization the observations are viewed as
a sparse matrix Y where Yij indicates the rating user
i gave to item j. Matrix factorization approaches then
fit this matrix Y with a dense approximation F . This
approximation is modeled as a matrix product between
a matrix U ∈ Rn×d of user factors and a matrix M ∈
Rm×d of item factors such that F = UMT .

Directly minimizing the error of F with respect to Y
is prone to overfitting and capacity control is required.
For instance, we may limit the rank of the approxima-
tion by restricting d. This leads to a Singular Value
Decomposition of F , which is known as Latent Seman-
tic Indexing in Information Retrieval. Note that this
approach ignores the sparsity of the input data and
instead models Y as a dense matrix with missing en-
tries being assumed to be 0, thereby introducing a bias
against unobserved ratings.

An alternative is proposed in (Srebro and Jaakkola,
2003) by penalizing the estimate only on observed val-
ues. While finding the factors directly now becomes a
nonconvex problem, it is possible to use semidefinite
programming to solve the arising optimization prob-
lem for hundreds, at most, thousands of terms, thereby
dramatically limiting the applicability of their method.
An alternative is to introduce a matrix norm which
can be decomposed into the sum of Frobenius norms
(Rennie and Srebro, 2005; Srebro et al., 2005; Srebro
and Shraibman, 2005). It can be shown that the latter
is a proper matrix norm on F . Together with a mul-
ticlass version of the hinge loss function that induces
a margin, (Srebro et al., 2005) introduced Maximum
Margin Matrix Factorization (MMMF) for collabora-
tive filtering. We follow their approach in this paper.
Similar ideas were also suggested by (Takacs et al.,
2009; Salakhutdinov and Mnih, 2008; Takács et al.,
2007; Weimer et al., 2008b; Bell et al., 2007) mainly
in the context of the Netflix Prize.

3 Regularized Matrix Factorization

In the following, we denote by Y ∈ Yn×m the (sparse)
matrix of observations defined on an observation do-
main Y, and we let U and M be d-dimensional factors
such that F := UM> should approximate Y . When-
ever needed, we denote by S ∈ {0; 1}n×m a binary
matrix with nonzero entries Sij indicating whenever
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Yij is observed. Finding U and M requires three com-
ponents: a loss measuring the distance between F and
Y , a regularizer penalizing the complexity in U and
M , and an optimization algorithm for computing U
and M .

3.1 Loss

In analogy to (Srebro et al., 2005) we define the loss:

L(F, Y ) :=
1
‖S‖1

∑
i,j

Sij l(Fij , Yij) (1)

where l : R×Y → R is a pointwise loss function penal-
izing the distance between estimate and observation.
A number of possible choices are listed below:

Squared error: Here one chooses

l(f, y) =
1
2

(f − y)2 and

∂f l(f, y) = f − y

ε-insensitive loss: It is chosen to ignore deviations
of up to ε via

l(f, y) = max(0, |y − f | − ε) and

∂f l(f, y) =

{
sgn[f − y] if |f − y| > ε

0 otherwise

Smoothed ε-insensitive loss: In order to deal with
the nondifferentiable points at |y−f | = ε one may
choose (Dekel et al., 2005) the loss function

l(f, y) = log(1 + ef−y−ε) + log(1 + ey−f−ε)

∂f l(f, y) = 1
1+exp(ε−y+f) −

1
1+exp(ε−f+y) .

Huber’s robust loss: This loss function (Huber,
1981) ensures robustness for large deviations in
the estimate while keeping the squared-error loss
for small deviations. It is given by

l(f, y) =

{
1
2σ (f − y)2 if |f − y| ≤ σ
|f − y| − 1

2σ otherwise

∂f l(f, y) =

{
1
σ [f − y] if |f − y| ≤ σ
sgn[f − y] otherwise

3.2 Regularization

Given the factors U,M which constitute our model we
have a choice of ways to ensure that the model com-
plexity does not grow without bound. A simple option
is (Srebro and Shraibman, 2005) to use the penalty

Ω[U,M ] :=
1
2

[
‖U‖2Frob + ‖M‖2Frob

]
. (2)

Indeed, the latter is a good approximation of the
penalty we will be using. The main difference being
that we will scale the degree of regularization with the
amount of data similar to (Bell et al., 2007):

Ω[U,M ] :=
1
2

∑
i

ni ‖Ui‖2 +
∑
j

mj ‖Mj‖2
 (3)

Here Ui and Mj denote the respective parameter vec-
tors associated with user i and item j. Moreover, ni
and mj are scaling factors which depend on the num-
ber of reviews by user i and for item j respectively.

3.3 Optimization

Overall, we strive to minimize a regularized risk func-
tional, that is, a weighted combination of L(UM>, Y )
and Ω[U,M ], such as

R[U,M ] := L(UM>, Y ) + λΩ[U,M ] (4)

As dataset sizes grow, it becomes increasingly infea-
sible to solve matrix factorization problems by batch
optimization. Instead, we resort to a simple online al-
gorithm which performs stochastic gradient descent in
the factors Ui and Mj for a given rating Fij simulta-
neously. This leads to Algorithm 1. This algorithm

Algorithm 1 Matrix Factorization
Input Y , d
Initialize U ∈ Rn×d and M ∈ Rm×d with small ran-
dom values.
Set t = t0
while (i, j) in observations Y do
η ←− 1√

t
and t←− t+ 1

Fij := 〈Ui,Mj〉
Ui ←− (1− ηλ)Ui − ηMj∂Fij l(Fij , Yij)
Mj ←− (1− ηλ)Mj − ηUi∂Fij l(Fij , Yij)

end while
Output U,M

is easy to implement since it accesses only one row of
U and M at a time. Indeed, it is easy to parallelize
it by performing several updates independently, pro-
vided that the pairs (i, j) are all non-overlapping.

4 Hashing

Storing U and M quickly becomes infeasible for in-
creasing sizes of m,n and d. For instance, for d = 100
and a main memory size of 16 GB, the limit is reached
for 20 Million users / items combined. This is very
likely even for some of the most benign industrial ap-
plications. Hence, we would like to find an approx-
imate compressed representation of U and M in the
form of some parameter vectors u and m.
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4.1 Compression

In the following, h, h′ denote two independent hash
functions with image range {1, . . . N} where N denotes
the amount of floating point numbers to be allocated
in memory, as represented by the array u ∈ RN and
m ∈ RN . Moreover, denote by σ, σ′ two independent
Rademacher functions with image range {±1} with ex-
pected value 0 for any argument of σ and σ′.

We now construct an explicit compression algorithm
which stores U and M in w as follows:

ui :=
∑

(j,k):h(j,k)=i

Ujkσ(j, k) and (5)

mi :=
∑

(j,k):h′(j,k)=i

Mjkσ
′(j, k) (6)

In other words, we add random entries in U and M
to u and m respectively. This scheme works whenever
only a small number of matrix values are significant.
We reconstruct U and M via

Ũij := uh(i,j)σ(i, j) and M̃ij := mh′(i,j)σ
′(i, j). (7)

This allows us to reconstruct Fij via

F̃ik =
∑
j

uh(i,j)mh′(k,j)σ(i, j)σ′(k, j). (8)

Please note that the use of hashing not only allows
us to compress the model, but also facilitates using
arbitrary types for i and j, as long as a hash function
is supplied. This allows e.g. to refer to a user through
its email address and to a book through its ISBN,

While the hasing approximation may seem overly
crude, we prove that it generates high quality recon-
struction of the original inner product below. This
analysis is then followed by an adjusted variant of the
stochastic gradient descent algorithm for matrix fac-
torization.

4.2 Guarantees

Mean: We begin by proving that the compression is
in expectation accurate. The reconstruction of U can
be computed as:

Ũij =
∑

(a,b):h(a,b)=h(i,j)

σ(a, b)σ(i, j)Uab

Since all σ(a, b) are drawn independently, it follows
that only the term σ2(i, j) survives which proves the
claim. Clearly the same holds for E[M̃ij ] = Mij . To
see that the same property holds for F̃ij we use the
fact that Ũ and M̃ are independent random variables.
Hence we have E[F̃ij ] = Fij .

Variance: To compute the latter we need to compute
the expected value of F̃ 2

ik. This is somewhat more
tedious since we need to deal with all interactions of
terms. We have

F̃ 2
ik =

∑
j,j′

∑
h(a,b)=h(i,j),h′(c,d)=h′(k,j)

h(e,f)=h(i,j′),h′(g,h)=h′(k,j′)

σ(a, b)σ(i, j)σ′(c, d)σ′(k, j)×

σ(e, f)σ(i, j′)σ′(g, h)σ′(k, j′)UabMcdUefMgh

We know that Eσ[σ(a, b)σ(c, d)] = δ(a,b),(c,d). Hence,
when taking expectations with respect to σ, σ′ and
h, h′ we can decompose the sum into the following con-
tributions:

For (j = j′) the expectation is nonzero only if (a, b) =
(c, d) and (e, f) = (g, h). In this case the sum over
the hash functions is nonzero only whenever h(a, b) =
h(i, j) and h(e, f) = h(g, h) which yields the following
contribution to be summed over all j:

 1
N

∑
a,b

U2
ab +

[
1− 1

N

]
U2
ij

 1
N

∑
a,b

M2
ab +

[
1− 1

N

]
M2
kj



For (j 6= j′) we may pair up (a, b) = (i, j), (c, d) =
(k, j), (e, f) = (i, j′), (g, h) = (k, j′) to obtain the con-
tribution

∑
j 6=j′

UijMkjUij′Mkj′ = F 2
ik −

∑
j

U2
ijM

2
kj .

For (j 6= j′) when pairing up (a, b) = (i, j′), (c, d) =
(k, j), (e, f) = (i, j), (g, h) = (k, j′) we obtain

∑
j 6=j′

1
N
Uij′MkjUijMkj′ =

1
N

F 2
ik −

∑
j

U2
ijM

2
kj



The same holds when combining (a, b) = (i, j), (c, d) =
(k, j′), (e, f) = (i, j′), (g, h) = (k, j). Note that the fac-
tor in both cases arose from the fact that the terms are
only nonzero for a hash function collision, that is, for
h(i, j) = h(i, j′) and h′(k, j) = h′(k, j′) respectively.

Finally, when combining (a, b) = (i, j′), (c, d) =
(k, j′), (e, f) = (i, j), (g, h) = (k, j) we again obtain
the same contribution, albeit now with a multiplier of
1
N2 since this is only nonzero if both h and h′ have
collisions. In summary, the expectation of F̃ 2

ij is given
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by

E[F̃ 2
ij ] =

[
1 + 1

N

]2 [
F 2
ik −

∑
j

U2
ijM

2
kj

]
+ d

N2 ‖U‖2 ‖M‖2

+ N−1
N2

[
‖U‖2 ‖Mk‖2 + ‖Ui‖2 ‖M‖2

]
+
[
1− 1

N

]2∑
j

U2
ijM

2
kj

<F 2
ij + 1

N

[
‖U‖2 ‖Mk‖2 + ‖Ui‖2 ‖M‖2 + 2F 2

ik

]
+ d

N2 ‖U‖2 ‖M‖2 − 3N
∑
j

U2
ijM

2
kj

Here inequality follows by dropping all negative terms
in N−2 and by using convexity to bound N−2F 2

ij . The
matrix norms are all Frobenius norms. Ignoring the
last term the variance of F̃ij is bounded by

Var[F̃ik] < 1
N

[
‖U‖2 ‖Mk‖2 + ‖Ui‖2 ‖M‖2 + 2F 2

ik

]
+ d

N2 ‖U‖2 ‖M‖2 (9)

Default Inner Product: It is worthwhile check-
ing guarantees regarding the default matrix value
Fik for given storage vectors u,m. Assume that
‖u‖∞ , ‖m‖∞ ≤ C. In this case we have by default
that matrix entries Fik satisfy

Pr
h,h′,σ,σ′

{|Fik| ≥ δ} ≤ 2 exp
(
− dδ

2

2C4

)
. (10)

This guarantee follows directly from Hoeffding’s in-
equality and the fact that individual terms in the sum∑
j σ(i, j)σ′(k, j)uh(i,j)mh′(k,j) are all bounded by C2

and that moreover the summands are independent ran-
dom variables with respect to σ, σ′ (we did not evaluate
σ(i, j) and σ(k, j) previously).

Obviously this bound does not hold for previously seen
arguments of σ, σ′. This is actually desirable — we
want to have generalization for users and items where
we observed data before.

Finally note that it is possible to improve (10) sim-
ply by replicating dimensions r times and by scaling
down each coordinate in U and M respectively by
r−

1
2 . This significantly improves the Hoeffding bound

in (10), albeit at a slight increase in variance. While
the first three terms in (9) remain unchanged (replica-
tion and scaling cancel in the matrix norms), the last
term changes from d

N2 to dr
N2 . Moreover, computation

increases by a factor of r.

4.3 Joint Storage

The variance bound still assumes that we have sepa-
rate storage for each of the matrices. This is inefficient,

since it requires us to state a trade-off between space
for U and M separately. Indeed, we can use the same
joint storage for U and M which yields the compres-
sion relation for a storage vector w:

wi :=
∑

h(a,b)=i

Uabσ(a, b) +
∑

h′(a,b)=i

Mabσ
′(a, b) (11)

Moreover, the reconstruction is identical to separate
storage allocation via

Ũij = wh(i,j)σ(i, j) and M̃ij = wh′(i,j)σ
′(i, j). (12)

As previously we have that E[Ũij ] = Uij and E[M̃ij ] =
Mij . The expected value of F̃ij has a small correction
term, though: when taking expectations with respect
to σ, σ, only those terms containing the same argu-
ments in both σ and σ′ remain. Hence we have that

Eσ,σ′

[
F̃ik

]
=
∑
j

UijMkj + δ(h′(k, j), h(i, j))
∑
j

UijMkj

Taking expectations over h and h′ yields that

E
[
F̃ik

]
=
[
1 + 1

N

]
Fik.

Bounding the variance is considerably more tedious,
since we now have to take care of collisions in both con-
struction and reconstruction. Nonetheless, the vari-
ance for F̃ik =

∑
j ŨijM̃kj is still O(N−1).

4.4 Algorithm

As a consequence of the compressed storage, we need
to modify Algorithm 1 to operate on a joint storage
location. This is fairly straightforward — we simply
substitute Ũ , M̃ for U and M .

Algorithm 2 Compressed Matrix Factorization
Input Y ,
Initialize w ∈ RN with small random values.
Set t = t0
while (i, k) in observations Y do
η ←− 1√

t
and t←− t+ 1

Fik :=
∑
j σ(i, j)σ′(k, j)wh(i,j)wh′(k,j)

γ := η∂Fik
l(Fik, Yik)

µ := (1− ηλ)
for j = 1 to d do
wh(i,j) ← µwh(i,j) − γσ(i, j)σ′(k, j)wh′(k,j)

wh′(k,j) ← µwh′(k,j) − γσ(k, j)′σ(i, j)wh(i,j)
end for

end while
Output w

Algorithm 2 has a number of advantages over a two-
stage procedure which first computes U and M and
subsequently compresses the values:
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Data set Users Movies Ratings Scale
EachMovie 61265 1623 2811717 1-6
MovieLens 6040 3900 1000209 1-5

Table 1: Data set statistics

1. Since we are optimizing directly the compressed
representation the approximation error is consid-
erably smaller.

2. We never need to allocate full memory for U and
M which can be infeasible for very large problems.

3. The number of users and items may vary over
time. In our construction, this is a non-issue —
simply start optimizing for additional i and k to
accommodate for this fact.

4. We may even change the dimensionality of the
model on the fly: change the summation range
from d to d′.

5 Experiments

In this section, we describe the empirical evaluation
conducted to assess the performance of the two main
contributions of this paper: (1)The ε-insensitive and
the Huber loss function and (2)The memory bound
matrix factorization model.

5.1 Data

We report experiments conducted on the EachMovie
and MovieLens datasets summarized in Table 1. As
we are investigating the relative performance of the
losses and the compression scheme, we restrict our-
selves to basic preprocessing of the data by removing
the global, user and movie means. Further increases in
absolute performance are conceivable based upon the
techniques presented in e.g. (Bell and Koren, 2007)
and (Potter, 2008).

For the EachMovie dataset, we randomly extracted
10 ratings of each user to form the test set for this
user. The remaining known ratings were used as the
training set. We repeated the procedure ten times with
different test sets to obtain 10 folds of the data. For
the Movielens dataset, we used the 5 train-test splits
generated by the script provided by the GroupLens
research lab1 with the dataset.

5.2 Evaluation of the loss functions

We compared the performance of the smooth ε-
insensitive loss and the Huber loss functions to the
widely adopted squared error loss. We performed ex-
tensive parameter tuning on one of the folds of each

1http://www.grouplens.org/

Squared ε-insensitive Huber
MovieLens

0.857± 0.006 0.859± 0.004 0.857± 0.004
EachMovie

1.177± 0.003 1.161± 0.007 1.180± 0.005

Table 2: RMSE values for the tuned models for differ-
ent train/test splits for the MovieLens and EachMovie
datasets.

data set and report averaged results on the remaining
folds. We tuned the learning rate η, the regularization
parameter λ and in the case of the ε-insensitive and
Huber loss ε and σ respectively.

The mean values of the test set RMSE for this set of ex-
periments along with the standard deviation are given
in Table 2. The ε-insensitive loss significantly outper-
forms the Squared and Huber loss for the EachMovie
data (p-value=0.0091). For the MovieLens data, the
losses perform in the same range without significant
differences. The good performance of the ε-insensitive
loss can be attributed to its resilience against the
noise prevalent in recommender systems data. The
ε-insensitive loss is by design more suited to this type
of data. Note that on EachMovie, higher RMSE scores
are to be expected than on MovieLens due to the wider
rating scale.

5.3 Evaluation of the model compression
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Figure 1: Heatmap of RMSE values on the test set for
the EachMovie data for different hashed model sizes.

The main goal of this evaluation is to examine the im-
pact that different constraints on the available memory
have on the performance of the prediction as compared
to the full, unconstrained model. To this end, we var-
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ied the size of the available memory in terms of the
number of elements used for the user and item matrix
representations, yielding a compression ratio between
1 : 1 and 1 : 20. We fixed the parameters (λ = 0.04
and η = 0.005) and restricted us to the squared error
to isolate the impact of the model compression.
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Figure 2:
Line plot of the RMSE’s for different numbers of
columns of a simple matrix factorization model and
an equally sized hashing-model for the MovieLens (a)
and the EachMovie (b) data.

Figure 1 shows a heatmap representation of the results
for different available memory for U and M . For the
heatmap representation we use 10 passes over the data
using the algorithm described in 2 and a dimensional-
ity of 20 for U and M . Please note that the dimen-
sionality of U and M has no influence on the memory

requirements when using the hashed model.

Surprisingly only very little (∼ 3%) performance is lost
even when the model is compressed to almost half its
original size for e.g. 720k elements for U and 16k ele-
ments for M resulting in a total memory requirement
of just above 2MB. We furthermore observe a smooth
and gradual increase in the RMSE values for smaller
models. The standard deviation of the RMSE scores
over the 10 runs is less than 0.01.

The variance over the ten runs on different data in all
experiments is surprisingly low, especially given the
fact that we are optimizing a non-convex function.
The low variance may mean that we always reach the
same local minimum or that this minimum is indeed a
global one.

Different Model Compression Schemes: We now
compare minimizing memory space usage by using a
hashed model versus decreasing the dimensionality d
of the U and M matrices by varying the number of
columns used. We perform a set of experiments tak-
ing an unhashed matrix model and varying the num-
ber of columns used in U and M from 40 to 1. We
compare performance to a hashed model with a fixed
dimensionality of 40, but varying amounts of compres-
sion to match the memory requirements of the lower
dimensional models.

Results are shown in Figure 2: we observe that the
hashed model outperforms the simple model for di-
mensionalities below 10. As can be seen, hashing per-
forms especially well under strong memory constraints.
This is particularly important in real-world applica-
tions where the number of users can be in the order of
hundreds of millions. In these cases, even storing 10
user and item factors quickly becomes infeasible, while
hashing provides a natural trade-off between the mem-
ory requirements and the model performance. Addi-
tionally, the memory requirements of the hashed model
are constant and do not scale with the number of users
or items as is the case with the lower dimensional, un-
hashed models.

Influence of σ, σ′: We conducted experiments to in-
vestigate the importance of obtaining an unbiased es-
timator by means of the Rademacher hash functions
σ, σ′. Setting them to the same constant adds a bias
to the estimation towards positive predictions. Ex-
periments on data are in sync with this observation:
For unnormalized data, a constant value of σ, σ′ seems
to perform better than a proper hash function. How-
ever, this effect is an artifact as such a model is out-
performed by a model using the proper Rademacher
functions on normalized data as well as, in prelimi-
nary experiments, by a model learning a per-user and
per-item bias on the unnormalized data.
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6 Conclusion

In this paper, we introduced a new factor model for
collaborative filtering that differs in two main aspects
from the state-of-the-art: (1) We introduced two new
loss functions: the ε-insensitive loss function and the
Huber Loss to factor models in order to achieve a large
margin model. (2) We introduce the notion of hashing
to bound the memory requirements of the model.

The benefits of the memory bound model are twofold:
first, it allows the model to be scaled to bigger datasets
on large servers, and to still big datasets on smaller
machines; second, the constant memory and hash-
ing requirements facilitates many optimizations in the
storage and use of the model such as using higher di-
mensional models, arbitrary user and item identifiers
and seemless addition and removal of users and items.

The ε-insensitive loss and the Huber loss functions not
only provide for a theoretically desirable large mar-
gin model, they also perform better on at least one of
the tested datasets compared to the often used least
squares loss function. The hashed memory bound
model exhibits a smooth gradual trade-off between the
model size and performance which can be adjusted
given the computational resources.
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