
A Convenient Framework
for Efficient Parallel Multipass Algorithms

Markus Weimer, Sriram Rao, Martin Zinkevich
Yahoo! Labs

Santa Clara, CA 95054
[weimer|sriramr|maz]@yahoo-inc.com

1 Introduction

The amount of data available is ever-increasing. At the same time, the available time to learn from
the available data is decreasing in many applications, especially on the web. These two trends
together with limited improvements in per-cpu speed and hard disk bandwidth lead to the need for
parallel machine learning algorithms. Numerous have been proposed in the past (including [1, 3, 4]).
Many of them make use of frameworks like MapReduce [2], as it facilitates easy parallelization and
provides fault tolerance and data local computation at the framework level. However, MapReduce
also introduces some inherent inefficiencies when compared to message passing systems like MPI.

In this paper, we present a computational framework based on Workers and Aggregators for data-
parallel computations that retains the simplicity of MapReduce, while offering a significant speedup
for a large class of algorithms. We report experiments based on several implementations of Stochas-
tic Gradient Descent (SGD): The well known sequential variant as well as a parallel version inspired
by our recent work in [5] which we implemented both in MapReduce and the proposed framework.

2 Example: Multi-Pass Parallel SGD

For the purposes of this algorithm we consider the set of examples as a set of convex functions
{c1, . . . cm}. The algorithm we provide runs as follows:

Algorithm 1 MultiPassParallelSGD({c1, . . . cm}, T, η, w∗, k)
Divide the data randomly among k machines with m′ = m/k examples on each machine.
∀ machines j,∀ examples t, cjt ← the tth example sent to machine j.
Initialize a common weight vector w∗.
for all i ∈ {1 . . . T} iterations do

for each machine j ∈ {1, . . . k} parallel do
Push wj ← w.
Choose a permutation p : {1 . . .m′} → {1 . . .m′} uniformly at random. (shuffle the data)
for all t ∈ {1 . . .m′} do
wj ← wj − η∇cjp(t)(w

j)

end for
end for
w∗ ← 1

k

∑k
j=1 w

j

end for

A key distinction between this and [5] is that after the first pass, data is not shared in a random
fashion. Thus, the theory from that paper does not directly follow. However, as we lower η, the
difference between the initial and final w∗ in a pass drops. Thus, for small η, the algorithm approx-
imates batch gradient descent.

1

Algorithm 2 Worker/Aggregator
INIT: Partition Data D; All workers i receive a handle to a partition Di

for all j ∈ {1, . . . T} iterations do
Each worker performs v′i = fDi(v) and returns v′
Each aggregator performs v = g({v′1, . . . , v′i}) and returns v

end for
return the last v

3 Architecture

Algorithm 1 can easily be implemented in a MapReduce framework: Each of the map instances
represents one of the inner SGD passes: After loading wj−1, each of the machines running the
map function (the mappers) runs SGD over the data assigned to it. After its pass it emits the new
weight vector which is subsequently averaged by the reduce function running on a single or multiple
machines. This implementation enjoys all the benefits of MapReduce implementations, such as:

Fault Tolerance: The MapReduce framework monitors mappers and reducers and restart tasks on
other machines should one of the machines fail.
Data Locality: Typically, MapReduce is applied on top of a distributed filesystem. Thus, the frame-
work can schedule the mappers on machines “close” to the data in the network topology.

This implementation of the algorithm is, however, sub-optimal from a performance perspective:
The algorithm repeats a procedure for T iterations between which only the relatively small model
w changes. This structure is far from unique to the parallel SGD studied in this paper. Many
algorithms perform data-parallel passes interleaved with coordination steps: batch gradient descent,
bundle methods and conjugate gradient descent obviously share this structure. Conjugate gradient
descent and bundle methods, computationally speaking, differ most radically from other methods in
that they use a line search, requiring several global decisions and therefore a lot of communication.
However, there is a trick where you take the projection of each function along the direction of search,
communicate these compressed examples to a central server, and then do the line search.

The MapReduce implementation cannot make use of this knowledge: (a) In each iteration, the frame-
work needs to schedule and provision the map and reduce machines. (b) In each iteration, all the
data is read again from disk, the cost of which can easily dominate the cost of the relatively simple
SGD updates. (c) As different iterations are treated as independent jobs, they need to communicate
by storing and reading w from disk, which also adds strain to the distributed file system.

To address these issues, we propose a different architecture composed of Workers and Aggregators:1

Worker: Upon initialization, a worker receives a handle to its data D, which it may load into
memory. The worker is then applied to a status v upon which it returns a status v′.
Aggregator: An Aggregator receives all v′ from the workers and aggregates them to a new status v,
which is then distributed to the Worker machines.

Workers and Aggregator communicate directly through the network. The whole process is shown
in Algorithm 2. Of course, such a setup is trivially achievable within a message passing system.
However, the formulation of the algorithm in terms of Workers and Aggregators gives rise to similar
benefits as in the MapReduce framework. Besides greatly simplifying the formulation of parallel
algorithms in comparison to using MPI, this approach also enjoys data locality and fault tolerance:
Data locality can be achieved by scheduling the Workers “close” to their data. By monitoring the
input and output of the workers and aggregators, the framework can both detect and recover from
machine failures easily.2 Besides retaining the major benefits of MapReduce, this model avoids the
drawbacks of it outlined above: In the absence of failures, no machines are rescheduled between
iterations. And given enough memory in all the workers combined, even the data loading is not
repeated between iterations, yielding additional speedups.

1We omit the trivial extension to a Combiner-equivalent here for space considerations.
2For many stochastic algorithms such as the one proposed here and under the assumption that a Worker

failure is unrelated to the data processed by that machine, a recovery may simply be to spin up another machine
with that data for the next round.

2

1.00

0.45

0.06 0.03 0.03
0.00

0.20

0.40

0.60

0.80

1.00

Sequential MapReduce W/A 10 Passes W/A 100
Passes

W/A Limit

Re
la

tiv
e

Ti
m

e
pe

r I
te

ra
tio

n

Figure 1: Relative training time per pass of the different systems (smaller is better): Sequential, MapReduce,
Worker/Aggregator for 10 and 100 passes, Worker/Aggregator ignoring the job setup cost.

With these two concepts, is possible to implement Algorithm 1 more efficiently by choosing fDi
(v)

to be a SGD-pass over the data Di with initial model v and g({v′1, . . . , v′i}) := 1
k

∑k
i=1 v

′
i.

4 Experiments

The objectives of the experiments are (a) to show empirical convergence of the parallel SGD and (b)
to study the speed differences between the MapReduce and the Worker/Aggregator implementation.

Implementation: We implemented Worker/Aggregator on top of Hadoop. This allowed us to use
the distributed file system and data local scheduling facilities of this MapReduce implementation. It
also facilitates code sharing between the different variants: The inner SGD loop, the data represen-
tation and all aspects unrelated to the chosen parallelization framework are shared between the im-
plementations. The communication between Workers and the Aggregator is setup using ZooKeeper,
a high-performance coordination service. The data exchange is then handled through direct TCP/IP
connections. To facilitate reproducibility, all experiments where conducted on a private cluster con-
sisting of 8 commodity machines, each equipped with 4 GB of main memory.

Data: We created a model for the data as follows. The label was selected uniformly at random,
positive or negative. For each label, there was a multinomial distribution over 1 million tokens. The
probability of each feature was drawn at random from [0.9, 1] × 10−6, with the remainder being
a probability on a “ε token” (which generates nothing). We drew 1000 tokens for each example.3
We generated 2 million examples. The dataset was partitioned into 8 parts, one per machine. In all
experiments, a linear model of 8 MB size was trained.4

4.1 Computational Performance

To determine the runtime per pass over the data, we ran each of the implementations for a varying
number of passes and measured the average time it took to obtain a model start to finish, includ-
ing job setup costs. See Figure 1 for a graph of the results. The relatively small speedup for the
MapReduce implementation on 8 machines versus the sequential version on only one machine is
surprising, but explainable: The sequential version doesn’t suffer from the multiple job setup costs
associated with MapReduce. Those setup costs, and the data loading, is amortized across iterations
in the Worker/Aggregator implementation. Also, the communication between iterations is direct,
and not through files as in MapReduce. These contribute to the massive speedup of that implemen-
tation. The initial setup costs also has much less of an impact for longer runs, as expected. Note

3If ε is selected 50 times from the 1000 draws for a message, there are 950 tokens in the example.
4Note that this is not the most favorable setup for the Worker/Aggregator scheme, as the amount of training

data per machine is relatively small, increasing the relative influence of the communication cost on the results.

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41 51 61 71 81 91

Lo
ss

 F
un

ct
io

n
Va

lu
e

Pass

Parallel eta=0.8
Sequential, eta=0.1
Sequential, eta=0.8
Parallel, eta=6.4

Figure 2: Training error per iteration of the sequential and parallel implementations.

that for bigger datasets, and especially for clusters with more available memory per machine, the
Worker/Aggregator approach should perform even better.

4.2 Convergence

In these experiments, we ran both the sequential and the Worker/Aggregator implementation for
100 passes over the dataset in order to analyse the empirical convergence properties of the parallel
algorithm. Figure 2 shows the convergence of the two algorithms for different choices of the learning
rate eta. Using a eight times higher learning rate, the parallel algorithm makes as much progress per
pass as the sequential one. This can be explained by the averaging step: The steps made by individual
machines are all reduced by a factor of 1

#machines . Together with the huge speedups (up to 30x)
demonstrated above for this setup, massive improvements in wall clock time are to be expected in
applications.

5 Conclusions and Future Work

We presented a parallel framework inspired by MapReduce and MPI that enjoys both the conve-
nience of MapReduce and the performance of message passing systems. We showed the practicality
of the approach by implementing a parallel SGD inspired by [5] in both MapReduce and the pro-
posed Worker/Aggregator framework. Our experimental results confirm convergence of the new
algorithm at essentially the same rate per pass as a sequential SGD. Also, the experiments demon-
strated the massive speedups possible by using Worker/Aggregator as opposed to MapReduce or
even sequential SGD. We will expand on this notion in our future work by investigating additional
machine learning algorithms and real-world datasets, starting with batch gradient descent.

References
[1] C.T. Chu, S.K. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for machine

learning on multicore. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information
Processing Systems 19, 2007.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. In OSDI’04:
Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation, 2004.

[3] J. Langford, A.J. Smola, and M. Zinkevich. Slow learners are fast. arXiv:0911.0491, 2009.

[4] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale distributed training
of conditional maximum entropy models. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1231–1239. 2009.

[5] Martin Zinkevich, Markus Weimer, Alex Smola, and Lihong Li. Parallelized stochastic gradient descent.
In Advances in Neural Information Processing Systems 23 (to appear), 2010.

4

