
Machine learning in ScalOps, a higher order cloud
computing language

Markus Weimer, Tyson Condie, Raghu Ramakrishnan
Yahoo! Labs, Santa Clara, CA 95054

[weimer|tcondie|ramakris]@yahoo-inc.com

1 Introduction

Machine learning practitioners are increasingly interested in applying their algorithms to Big Data.
Unfortunately, current high-level languages for data analytics in the cloud (e.g., [2, 15, 16, 5]) do
not fully cover this domain. One key missing ingredient is means to express iteration over the
data (e.g., [19]). Zaharia et al., were the first to answer this call from a systems perspective with
Spark [20]. Spark is built on a data abstraction called resilient distributed datasets (RDDs) that
reference immutable data collections. The Spark domain-specific language (DSL) defines standard
relational algebra transformations—selection, join, group by, etc.—and mechanisms to cache RDDs
in memory. The Spark runtime is optimized for in-memory computation and has published speed-
ups of 30× over Hadoop MapReduce for many machine learning and graph algorithms, which is in
line with the gains found using MPI or even special case implementations (e.g. [18]).

However, there still is not a single platform that can capture the entire analytics pipeline for ma-
chine learning. Thus, it is common to compose multiple Pig, MPI and MapReduce programs into
large work-flows. This fractioning of individual processing steps can be a major pain e.g., for opti-
mization, debugging, and code readability. Our prescription to this dilemma is a new DSL for data
analytics called ScalOps. Like Pig, ScalOps combines the declarative style of SQL and the low-
level procedural style of MapReduce. Like Spark, ScalOps can optimize its runtime—the Hyracks
parallel-database engine [3]—for repeated access to data collections. It differs from prior platforms
in the following ways, allowing it to handle a wider range of analytics over any (big or small) data.

1. We provide an explicit loop construct that captures the iteration in the runtime plan.
2. We use recursive query plans to execute iterations in a data-parallel runtime called Hyracks.
3. Hyracks is optimized for computations over both in-memory and external memory datasets.

In this abstract, we describe the ScalOps language from a machine learning perspective by presenting
two examples. We begin with a discussion of the related work in Section 2. Section 3 explores two
well-known examples from the machine learning and graph analytics domain expressed in ScalOps.
In Section 3.1, we describe a ScalOps implementation of batch gradient descent—the quintessen-
tially parallel machine learning algorithm. We then show in Section 3.2 how the graph computation
framework like Pregel [14] can be implemented in a few lines of ScalOps code. Section 4 summa-
rizes our current work and proposes some language-level extensions.

2 Related Work

ScalOps draws inspiration from parallel [8, 9] and deductive databases [17], and frameworks for
machine learning and graph analysis [13, 14, 20, 10].

Data-parallel computing is an active research field. Since the initial MapReduce paper [7], systems
like Dryad [11] and Hyracks [3] have successfully made the case for supporting a richer set of
operators beyond map and reduce. These systems are built on a shared-nothing database architecture,

1

which has been proven to achieve very high scalability via partitioned and pipelined parallelism [8,
9]. Of these systems, Hyracks shows the most promise as being a runtime that can support and
optimize recursive query plans (see [1, 17]) for efficient iterative analysis.

Pig [15] and DryadLINQ [12] reduce the accidental complexity of programming in the lower-level
dataflow (e.g., MapReduce) by exposing a high-level declarative language. Both recognize the desire
to express data transformations as a series of imperative steps but solve them in different ways. Pig
is an external DSL that exposes declarative data transformations as expressions that can be assigned
to variables and used in subsequent expressions. This adds the notion of a control flow to a Pig
program that maybe more palatable to the MapReduce enthusiast. DryadLINQ is an internal DSL
that inherits a control flow from its host language C#. Like DryadLINQ, ScalOps is an internal
DSL and borrows its control flow from its host language Scala. Like Pig, ScalOps exposes similar
declarative expressions that can be assigned to variables and referenced in later expressions.

Neither Pig nor DryadLINQ consider data caching in the context of iterative analysis; since their
respective runtimes do not consider it. Bu et al., added iteration to a single MapReduce job and
showed significant benefits to pipelining between the reduce and map steps [4]. Caching is an im-
portant optimization for iterative machine learning tasks [18]. Spark addresses this issue by allowing
programmers to explicitly cache datasets for “very fast” iterative analysis [20].

The other area we draw experience from is distributed graph processing. Pregel [14] is a system
developed at Google that applies a Bulk Synchronous Processing (BSP) model to graphs analyt-
ics. In Pregel, nodes send messages to neighboring nodes in the graph via a series of synchronized
time-steps called supersteps. The Pregel runtime executes supersteps until no new messages are gen-
erated. 1 Parallelization and fault-tolerance in Pregel’s runtime is similar to earlier BSP systems [7].
GraphLab [13], on the other hand proposes a computational abstraction based on asynchronous up-
dates and omits the supersteps completely. GraphLab has demonstrated exceptional performance
and scalability on single massively parallel machines and its abstraction has shown promise in the
distributed setting.

3 Machine Learning Query Plans

ScalOps is a high-level language that moves beyond single pass data analytics (i.e., MapReduce)
to include multi-pass workloads. ScalOps supports iteration over algorithms expressed as relational
queries on the training and model data. ScalOps’ expressiveness follows from Chu et al. [6]—
showing that many ML algorithms are naturally represented in the MapReduce programming model.
ScalOps goes beyond the prior work by (a) extracting expressions over the model data and (b) push-
ing iterations over query plans into the execution engine.

Today, the programmer is responsible for writing the optimal runtime plan, which is hard in a shared
cloud computing environment. By providing a query plan abstraction, ScalOps facilitates runtime
optimizations that consider hardware specifications, data statistics and the current load when gen-
erating a runtime plan. This liberates the programmer from having to write low-level code that
convolutes the machine learning algorithm. This section presents the ScalOps DSL via two example
algorithms: Batch Gradient Descent and Pregel [14]. The key observation is that ScalOps abstracts
away low-level details with a succinct interpretation of the algorithm as code.

3.1 Map Reduce: Batch Gradient Descent

Consider the update rule for learning a L2-regularized linear model through batch gradient descent:

wt+1 =

(
wt − η

∑
x,y

δwt
(l(y, 〈wt, x〉))

)
(1− ηλ) (1)

Here, λ and η are the regularization constant and learning rate, and δwt
denotes the derivative with

respect to wt. The sum in (1) decomposes per data point (x, y) and can therefore be trivially paral-
lelized over the data set. Furthermore, the application of the gradient computation can be phrased as
map in a MapReduce framework, while the sum itself can be phrased as the reduce step, possibly
implemented via an aggregation tree for additional performance.

1Pregel also adds a vote to halt protocol that can be modeled via sending a “self” message.

2

Listing 1: Batch Gradient Descent in ScalOps
1 def bgd(xy: Table[Example], g:(Example, Vector)=>Vector, e:Double, l:Double) =
2 loop(zeros(1000), 0 until 100) {
3 w => (w - (xy.map(x => g(x, w)).reduce(_+_) * e) * (1.0 - e * l)
4 }

Listing 2: Pregel in ScalOps
1 class Node(id: Int, neighbors: List[Int])
2 class Message(to: Int)
3
4 def pregel(nodes: Table[Node], f: (Node, Bag[Message]) => (Node, Bag[Message])) {
5 val messages = Table[Message]()
6
7 loop(False, (b: BooleanType) => !b) { b => {
8 val groups = cogroup(nodes by (_.id) outer, messages by (_.to))
9 val msgAndNodes = groups.map(e => f(e._2.head, e._3))

10 messages := msgAndNodes.map(_._2.FLATTEN)
11 nodes := msgAndNodes.map(_._1)
12 messages.isEmpty
13 }
14 }
15 }

Listing 1 shows an implementation of this parallelized batch gradient descent in ScalOps. Line 1
defines a function bgdwith the following parameters: the input data xy, the gradient function g (δwt

in (1)), the learning rate e (η) and the regularization constant l (λ). Line 2 defines the body of the
function to be a loop, which is ScalOps’ looping construct. It accepts three parameters: (a) Input
state — here, we assume 1000 dimensions in the weight vector — (b) a “while” condition that (in
this case 2) specifies a range (0 until 100) and (c) a loop body. The loop body is a function from
input state to output state, which in this case is from a Vector w to its new value after the iteration.
In the loop body, the gradient is computed for each data point via a map call and then summed up
in a reduce call. Note that + is a scala shorthand for the function literal (x,y) => x+y.

ScalOps bridges the gap between imperative and declarative code by using data structures and lan-
guage constructs familiar to the machine learning domain. This is evident in Listing 1, which is
nearly a 1:1 translation of Equation 1 and directly compiles to executable code. ScalOps query
plans capture the semantics of the user’s code in a form that can be reasoned over and optimized.
For instance, since the query plan contains the loop information we can recognize the need to cache
as much of xy in memory as possible, without explicit user hints. Furthermore, the expression in-
side of the loop body itself is also captured. 3 This could offer further optimization opportunities
reminiscent to traditional compilers i.e., dead-code elimination and constant-propagation.

3.2 Bulk Synchronous Processing: Pregel

As a second example we discuss an implementation of Pregel [14] in ScalOps following a similar
approach to the one described in [20] using Spark. Pregel is a graph-centric computation frame-
work where computation happens in supersteps. In each superstep, the nodes of the graph process
messages sent to them in parallel and produce a new set of messages and vertex state that is to be
processed in the next superstep. The program terminates when there are no more messages to be
processed. Nodes that have messages in a given superstep are referred to as active in that superstep.
A node can ensure to be active in the next superstep by sending a message to itself.

Listing 2 shows an implementation of Pregel in ScalOps. Lines 1 and 2 define the Node and
Message classes the user would typically subclass for the algorithm in question. Line 4 defines
the function pregel which accepts the following parameters: The Table nodes containing the
Nodes of the graph and a function f that accepts a Node and a set of Messages to produce an

2We also support boolean expressions on the state object i.e., the weight vector.
3We currently capture basic math operators (+, -, *, /) over primitive types (int, float, double, vector, etc.).

3

updated Node and a new set of Messages to be processed in the next superstep. The function f is
assumed to be defined for the case of no messages, e.g. the first iteration where it shall emit the un-
changed Node and no messages. Line 5 declares the (currently empty) message Table to be used
within the loop. In Line 7, the loop operator is used to form the Pregel main loop. Here, the loop is
not defined over a set range of iterations as above, but a boolean expression indicating whether the
message table is empty. Its initial value is set to false and the loop continues as long as it stays
false as defined by (b: BooleanType) => !b. Note that BooleanType is not a Scala
type, but one defined by ScalOps that extracts expression trees to be part of the query plan. This
facilitates certain optimizations (see below). Different from the Batch Gradient Descent example,
the loop body now consists of multiple statements to implement a Pregel superstep. In Line 8, the
messages are grouped with their target nodes. In Line 9 the update function is applied to compute
new nodes and messages, resulting in a Table[Node, Bag[Message]]. This Table is then
split into the updated nodes and new messages in Lines 10 and 11. Lastly, Line 12 returns whether
the message table is empty to the loop operator.

Listing 2 compiles to a query plan that repeatedly executes supersteps while (some) vertices continue
to produce messages. We can optimize this iterative query plan in two ways. Firstly, by observing
that the isEmpty statement need only be true for one (message) instance in order to be globally
true. This permits early detection of the need for a subsequent superstep; allowing the runtime en-
vironment to start planning its resource requirements for the next iteration. Secondly, the cogroup
operator can include a function to pre-aggregate—or summarize—the output state. This is reminis-
cent to the combiner function in MapReduce and can be a very effective optimization to reducing
network traffic and overall memory pressure.

4 Conclusion

ScalOps is a new internal domain-specific language (DSL) for Big Data analytics that targets ma-
chine learning and graph-based algorithms. It unifies the so-far distinct DAG processing as found in
e.g. Pig and the iterative computation needs of machine learning in a single language and runtime.
It exposes a declarative language that is reminiscent to Pig with iterative extensions. The loop
block captures iteration in a recursive query plan so that it can be optimized for any given cloud en-
vironment. The Hyracks runtime directly supports these iterations as recursive data-parallel runtime
plans, thereby avoiding the pitfalls of an outer driver loop. We highlighted the expressiveness of
ScalOps by presenting two example implementations: Batch Gradient Descent—a trivially parallel
algorithm—and Pregel, a computational framework of its own. The resulting code was nearly a 1:1
translation of the target mathematical description.

ScalOps benefits from being a DSL internal to the Scala language, primary in terms of programmer
productivity and code readability, but also in optimization opportunities. In Scala, programmers have
access to all Java libraries and benefits of running on a JVM (ubiquity, administrative tools, profiling,
garbage collection, etc.). ScalOps seamlessly integrates with well-known IDEs (Eclipse, NetBeans,
etc.) thanks to the respective Scala plugins. ScalOps inherits a static type-checker from Scala;
something foreign to many existing data-flow languages. ScalOps uses Scala closures to package
user code for runtime execution. In Pig, this code would be external Java code that programmers
would need to explicitly package and ship to the runtime. Moreover, Pig lacks visibility into this
code and can not optimize for associativity and commutativity properties in the absence of explicit
hints. 4

Looking forward, we plan on adding asynchronous extensions and a graph API akin to GraphLab.
Graph-based analytics shows the most promise in terms of benefiting from a recursive query infras-
tructure. Much of the looping support described here is needlessly verbose when the underlying
runtime supports it natively. Frameworks like GraphLab expose just the right amount of API code,
and capture ‘iteration” in the semantics. This leads to a natural recursive query representation of the
GraphLab runtime but will first require the asynchronous extensions.

4In Pig, a UDF can inherit from a special base UDF class that indicates the function is associative and
commutative.

4

References
[1] Foto N. Afrati, Vinayak Borkar, Michael Carey, Neoklis Polyzotis, and Jeffrey D. Ullman.

Map-reduce extensions and recursive queries. In Proceedings of the 14th International Confer-
ence on Extending Database Technology, EDBT/ICDT ’11, pages 1–8, New York, NY, USA,
2011. ACM.

[2] The Hive Project. http://hive.apache.org/.
[3] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares Vernica.

Hyracks: A flexible and extensible foundation for data-intensive computing. In Serge Abite-
boul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan, editors, ICDE, pages 1151–1162.
IEEE Computer Society, 2011.

[4] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: efficient iterative
data processing on large clusters. Proc. VLDB Endow., 3:285–296, September 2010.

[5] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE:
Easy and efficient parallel processing of massive data sets. In Proc. VLDB, 2008.

[6] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu, Gary R. Bradski, Andrew Y. Ng, and
Kunle Olukotun. Map-Reduce for Machine Learning on Multicore. In Bernhard Schölkopf,
John C. Platt, and Thomas Hoffman, editors, NIPS, pages 281–288. MIT Press, 2006.

[7] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clus-
ters. In Proceedings of the 6th conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, page 10, Berkeley, CA, USA, 2004. USENIX Association.

[8] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao, and R. Rasmussen.
The gamma database machine project. IEEE Trans. on Knowl. and Data Eng., 2:44–62, March
1990.

[9] David DeWitt and Jim Gray. Parallel database systems: the future of high performance
database systems. Commun. ACM, 35:85–98, June 1992.

[10] Philipp Haller and Heather Miller. Parallelizing machine learning-functionally: A framework
and abstractions for parallel graph processing. In The 2nd annual Scala Workshop, Stanford,
CA, June 2011.

[11] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In EuroSys ’07: Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 59–72,
New York, NY, USA, 2007. ACM.

[12] Michael Isard and Yuan Yu. Distributed data-parallel computing using a high-level program-
ming language. In Proceedings of the 35th SIGMOD international conference on Management
of data, SIGMOD ’09, pages 987–994, New York, NY, USA, 2009. ACM.

[13] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M.
Hellerstein. Graphlab: A new framework for parallel machine learning. CoRR, abs/1006.4990,
2010.

[14] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In
Proceedings of the 28th ACM symposium on Principles of distributed computing, PODC ’09,
page 6, New York, NY, USA, 2009. ACM.

[15] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD ’08, pages 1099–1110,
New York, NY, USA, 2008. ACM.

[16] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming Journal, 13(4):227–298, 2005.

[17] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on deductive database
systems. Journal of Logic Programming, 23:125–149, 1993.

[18] Markus Weimer, Sriram Rao, and Martin Zinkevich. A convenient framework for efficient
parallel multipass algorithms. In LCCC : NIPS 2010 Workshop on Learning on Cores, Clusters
and Clouds, December 2010.

5

[19] Jerry Ye, Jyh H. Chow, Jiang Chen, and Zhaohui Zheng. Stochastic gradient boosted distributed
decision trees. In CIKM ’09: Proceeding of the 18th ACM conference on Information and
knowledge management, pages 2061–2064, New York, NY, USA, 2009. ACM.

[20] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. Technical Report UCB/EECS-
2011-82, EECS Department, University of California, Berkeley, Jul 2011.

6

