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Abstract
Large-scale machine learning (ML) systems are
becoming widely used. Typically, these ML sys-
tems run on fixed resources, but it is difficult to
find their optimal configurations (e.g., how many
nodes to use, how to distribute data) since they
depend on multiple factors such as hardware en-
vironments, ML algorithms, input datasets, etc.
Furthermore, optimal configurations often can
change over time due to fluctuating cluster re-
sources and changing ML algorithm patterns. In
this paper, we present Dolphin, an elastic ma-
chine learning framework that addresses the con-
figuration problem at runtime. Dolphin solves a
cost-based optimization problem to find an op-
timal configuration and reconfigures the system
dynamically at runtime. Dolphin introduces a
new distributed memory abstraction to change re-
source and data configurations based on the opti-
mizer plan transparently and efficiently.

1. Introduction
Large-scale machine learning (ML) is a key ingredient
to realize the value proposition of the Big Data revolu-
tion. Successful applications include topic modeling, rec-
ommendation, classification and deep learning for sensory
data (Smola & Narayanamurthy, 2010; Li et al., 2014;
Chilimbi et al., 2014; Dean et al., 2012). Machine learning
algorithms differ from most other Big Data applications in
their iterative-convergent behavior: they iteratively update
the model until the model converges or a maximum num-
ber of iterations is reached. Parameter Servers (Smola &
Narayanamurthy, 2010) have been introduced to overcome
the scalability challenges in such a system. They facilitate
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asynchronous parallel computation. Training data is dis-
tributed across workers, which synchronize model param-
eters via a set of servers by pushing updates to them and
pulling up-to-date parameter values from them.

The computational performance of a machine learning pro-
gram on a given data set can be quantified by the time re-
quired to reach model convergence. In particular, the com-
putational performance of the Parameter Server approach is
influenced by the set of workers and servers as well as the
distribution of data across the workers, which together form
the configuration of the Parameter Server. Prior work not
only validates this configuration-dependent performance,
but it also provides ways to perform a static optimization
of this configuration (Yan et al., 2015). However, it is
difficult to find a fixed optimal configuration both from a
systems perspective and from a machine learning perspec-
tive. Parameter update frequencies are not uniform; neither
over time nor across parameters. Similarly, the available
cluster resources are not static for the duration of the train-
ing, which leads the resource manager (e.g., YARN (Vav-
ilapalli et al., 2013) or Mesos (Hindman et al., 2011)) to
either offer more (free) resources or preempt already allo-
cated resources during training. Lastly, performance is not
uniform over time for a single compute node and across
nodes, which necessitates workload rebalancing.

This gives rise to the need for runtime optimizations of the
Parameter Server configuration. The runtime optimization
in turn requires solutions to two technical challenges: (1)
an optimizer and an associated data collection scheme to
decide when and how to change the configuration, and (2)
a Parameter Server system that can update its configuration
during runtime.

Dolphin is a framework that supports runtime configura-
tion optimization in the Parameter Server architecture by
addressing these two challenges. Dolphin performs cost-
based optimization at runtime. Dolphin monitors the com-
putation and communication time in the system, estimates
the iteration time based on a cost model, and computes
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an optimal configuration to maximize overall performance.
When Dolphin decides to change its configuration, Dolphin
relies on an underlying distributed memory system, called
Elastic Memory Store, to execute the reconfiguration ac-
tions efficiently.

We present related work and then describe the Dolphin
framework in the rest of the paper.

2. Related Work
Much research has been done on distributed machine learn-
ing systems. We briefly summarize works that are most
relevant to Dolphin.

Spark MLlib (The Apache Software Foundation, 2016)
is an ML library built on Spark. Spark MLlib performs
synchronous execution, i.e., there is a barrier to syn-
chronize model updates at every iteration. Mahout (The
Apache Software Foundation, 2015) is an ML library tar-
geting H2O, Flink and Spark as backend execution engines.
GraphLab (Low et al., 2012) represents ML algorithms as
graphs and executes them with a graph processing engine.
TensorFlow (Abadi et al., 2015) is an ML framework that
is built on the DAG processing of tensors.

In recent years, the Parameter Server architecture has been
successfully used for large-scale machine learning systems:
e.g., Petuum (Xing et al., 2015), ParameterServer (Li et al.,
2014), Yahoo! LDA (Smola & Narayanamurthy, 2010),
Adam (Chilimbi et al., 2014), and DistBelief (Dean et al.,
2012). Petuum and Parameter Server provide ways to trade
between convergence and system efficiency by bounding
the staleness of model updates. Adam and DistBelief use
parameter servers to train large-scale deep neural networks.
All of these frameworks use a static set of workers and
servers, focusing on how to improve the performance of
ML algorithms for a given static configuration.

There has been a few proposals to find a good configura-
tion to use based on a cost model. The performance model
for Adam (Yan et al., 2015) captures the training time of
DNNs by taking advantage of the algorithm characteristics
of DNNs. The work uses the model to provision optimal
resources for DNN training statically. SystemML (Ghot-
ing et al., 2011; Huang et al., 2015) compiles a declara-
tive ML program into a control program and MapReduce
jobs. The hybrid runtime provides an optimizer that can
tune memory configurations of the control program and
MapReduce jobs by dynamically recompiling the ML pro-
gram. TUPAQ (Sparks et al., 2015) tackles the problem of
model search for Spark MLlib: finding a supervised learn-
ing model that provides good prediction accuracy by se-
lecting an ML algorithm and its hyper-parameters. TUPAQ
also has an estimator that decides the number of nodes to
use statically based on a model of cluster job execution
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Figure 1. The Dolphin Framework that supports runtime configu-
ration optimization. Dolphin adds Optimizer and Elastic Memory
Store to the static parameter server ML system architecture.

time. Unlike prior work, Dolphin is the first system that
performs runtime optimization of the Parameter Server ML
framework. Dolphin can reconfigure the system transpar-
ently and efficiently by introducing a new distributed key-
value memory store tailored to processing data.

3. The Dolphin Framework
We propose Dolphin, a framework that supports runtime
configuration optimization. It approaches the system op-
timization problem in two steps. In the first step, it finds
the optimal configuration for a running Parameter Server
system. In the second step, it applies that configuration to
the running system in the most efficient way. To do so, we
extend the existing Parameter Server architecture with two
new components, Optimizer and Elastic Memory Store, as
depicted in Figure 1. Optimizer finds the optimal configu-
ration based on real-time system metrics. Reconfiguration
requests from the Optimizer are sent to Elastic Memory
Store, which applies them with zero downtime.

Optimizer, as its name suggests, is in charge of obtaining
the optimal configuration. Multiple factors such as the used
algorithm, the data set, and the system environment can
affect the iteration time and convergence per iteration and
therefore the optimal configuration. The impacts of such
factors cannot all be predicted in advance for finding the
optimal configuration. We tackle our optimal configuration
problem by reflecting the current status of the running ML
system in the solution to the problem. Metrics related to
computations and communications occurring at each node
are used to find the optimal configuration of the running
system.
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Elastic Memory Store (EMS) is in charge of applying the
optimal configuration to the running system efficiently. A
naive method to apply the optimal configuration would be
to checkpoint the current state, stop the job, and restart the
job, recovering the learned state from the checkpoint. How-
ever, the overhead incurred with this method is substantial.
Moreover, if the system’s optimal configuration changes
over time, we need to make frequent configuration modi-
fications. Repeating restarts are inefficient. Thus, we need
a method to apply the new configuration without stopping
and restarting the system during runtime. EMS provides a
mechanism to apply configurations during runtime so that
reconfiguration cost is minimized.

3.1. Optimizer

Machine learning is an iterative convergent process, con-
sisting of many iterations that perform similar computation.
Therefore the wall clock training time of a machine learn-
ing job is determined by the time elapsed for each itera-
tion and the number of iterations required to achieve model
convergence. Optimizer models the iteration time as a cost
function of several variables, namely the number of work-
ers and servers nodes as well as the data and model distri-
bution. Through cost-based optimization, Optimizer finds
the optimal configuration that produces the lowest cost, i.e.
the shortest iteration time, using metrics collected during
runtime.

We first define a few notations to explain the cost terms.
w and s denote the number of workers and the number of
servers, respectively. d refers to the data distribution across
workers, while D equals the total size of the entire dataset.
Likewise, m indicates the model distribution across servers
and M is size of the whole model.

During an iteration, a worker performs computation on its
local partition of training data with a model given from
the servers. The computation results are sent back to the
servers via push requests, and the local model is updated
with pull requests. Thus, the iteration time consists of the
time spent on local computation, defined as computation
cost, and the communication with servers, defined as com-
munication cost.

Computation cost. For computation, each worker i does
a pass on its local training data, di, per iteration. Using
the notion Ci

w.proc to indicate worker i’s unit computation
cost, the computation cost of worker i can be written as

Ci
comp(di) = Ci

w.procdi (1)

As the given training data partition increases, the compu-
tation cost of worker i becomes greater as well. Note that
Ci

w.proc, although not known yet, is a constant and is not a

value Optimizer adjusts.

It is well known that slow workers act as computation bot-
tlenecks in distributed computing (Cipar et al., 2013; Kwon
et al., 2012; Yadwadkar et al., 2014). We set the total com-
putation cost Ccomp to be the largest computation cost of
w workers.

Ccomp(w,d) = max
i=1,...,w

[
Ci

comp(di)
]

= max
i=1,...,w

[
Ci

w.procdi

] (2)

Communication cost. We model communication cost as
the delay incurred on a worker’s iteration when communi-
cating with the server. The communication cost consists of
pure network cost, Cnet, and the processing cost for push
and pull requests in servers, Clatency.

Similar to computation cost, each server j is presumed to
have a unique unit processing cost, Cj

s.proc, and is consid-
ered to process partial models of size mj . Then, the number
of requests that are sent to a server per iteration is propor-
tional to both mj and w. A server that takes a large por-
tion of partial models receives many push and pull requests
from workers, which explains the mj term, while placing
many workers also increases the number of requests be-
cause requests issued from workers are oblivious of other
workers, which leads to the w term.

Cj
latency(w,mj) = Cj

s.procmjw (3)

Since the pure network cost Cnet is not dependent of any
server’s computation performance, it is simply set as a con-
stant. As a result, the total communication cost can be esti-
mated as

Ccomm(w, s,m) = Cnet + max
j=1,...,s

[
Cj

latency(w,mj)
]

= Cnet + max
j=1,...,s

[
Cj

s.procmjw
]

(4)

The goal of Optimizer is to find values for the variables w,
s, d, and m that minimize the total cost.

Find w∗, s∗,d∗,m∗

= argmin
w,s,d,m

[
Ccomp(w,d) + Ccomm(w, s,m)

]
= argmin

w,s,d,m

[
max

i

[
Ci

w.procdi

]
+ Cnet

+max
j

[
Cj

s.procmjw
]]

(5)
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Dolphin runs monitors to collect metrics to compute the
above cost terms. Monitors are run as a part of each server
and worker node in order to reflect the status of all servers
and workers in the machine learning computations. For
each iteration, monitors gather metrics to compute opti-
mal configurations. Such metrics include iteration time
and other time durations contributing to finding the optimal
configuration. Once the metrics are collected by monitors
on each node, they must be sent to the plan generator for
optimal configuration calculation.

The plan generator receives metrics from monitors accord-
ing to the scheduling policy we choose to implement in the
system. As soon as the metrics are received, the plan gener-
ator applies the collected metrics to the optimization prob-
lem formula to calculate the optimal configuration. After
the optimal configuration calculation, the plan generator
determines whether a reconfiguration is required or not.
A reconfiguration would be required if the current system
configuration differs from what has been calculated. The
plan generator then maps the change in configuration to
calls to the interfaces provided by Elastic Memory Store
(EMS), generating an optimization plan, and executes the
plan by triggering the EMS reconfiguration options. Since
plan generation itself involves computations, we keep the
plan generator in a separate node from worker and server
nodes to minimize any unfavorable overhead slowing down
the running ML algorithm.

3.2. Elastic Memory Store

Optimizer focuses on finding optimal configurations for
ongoing machine learning jobs. However, the found con-
figurations would be of no use if they cannot be executed
and applied in time without halting the running job. Elastic
Memory Store (EMS) provides an efficient way to change
the system’s configuration.

EMS is a distributed in-memory store abstraction that al-
lows efficient reconfiguration during runtime. Clients of
EMS can store values to and retrieve values from EMS,
similar to what can be done in distributed key-value stores.
When a reconfiguration is requested, EMS can add or re-
move resources by interacting with underlying resource
managers (e.g., YARN and Mesos), and migrate data be-
tween the key-value stores on nodes without adversely af-
fecting runtime performance.

EMS clients access and update each data item per key with
simple and standard operations like put and get. EMS
also provides interfaces which Optimizer can call to re-
configure the system dynamically during runtime: add,
remove, and move.

EMS consists of the EMS master and a set of Memo-
ryStores. The EMS master is the endpoint where Opti-

mizer submits its generated optimization plan. It manages
MemoryStores where algorithms can put/get data to/from
by keeping track of data locations. MemoryStores re-
side in each worker and server nodes, serving as a dis-
tributed key-value store with key-value mappings on differ-
ent kinds of data depending on which node it resides. On
the worker side, training data is distributed among Mem-
oryStores. On the server side, model parameters are dis-
tributed among MemoryStores. The master keeps a rout-
ing table of MemoryStores distributed among worker and
server nodes to know on which nodes the reconfiguration
should take place.

A MemoryStore is a local key-value store. Key is the unit of
data access in MemoryStore, which is mapped to a single
and mutable value. Clients, workers and servers of ML jobs
in our context, can access data by specifying keys. Block,
on the other hand, is the unit of management. For exam-
ple, data migration is performed by blocks, not by a single
key-value tuple. A block consists of the data whose key
is within a range that divides the entire key-space. When
data is put in a MemoryStore, the data is stored in the cor-
responding block.

EMS provides two types of reconfigurations. EMS ensures
that all operation to the existing data in MemoryStores by
running ML algorithms is unaffected - i.e., the migration is
transparent - for both reconfiguration types. First, the EMS
master can be asked to add more resources to the system.
In this case, it requests for the resources to a lower level
system (e.g., the cluster resource manager) and registers
them as a part of the EMS. At the same level, the EMS
master can be asked to release its resources, applying the
necessary modifications to the EMS.

• add (Integer numNodes): Adds numNodes
new nodes. Other tasks such as application code trans-
fer on the new node can take place.

• delete (List<ID> ids): Deletes existing
nodes whose IDs are in ids.

Second, the EMS master can be asked to redistribute data in
MemoryStores. The EMS master uses the routing table to
locate the source and the destination of data being migrated
and then orders MemoryStores to transfer the data. This
operation consists of (1) transferring the data blocks to the
target MemoryStore, and (2) switching the ownership of
the moved blocks for maintaining a synchronized view of
block ownership across the entire system. To conduct such
operation, EMS provides the interface below:

• move (Integer numBlocks, ID src, ID
dest): Moves the data in blocks from src to dest.
The EMS Master chooses blocks in src to move
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as many as numBlocks according to its ownership
table.

This migration is transparent to the clients of EMS. We try
to minimize the potential slowdown of client accesses to
the moving data and we ensure that block ownership must
be switched atomically. We combine on-demand pull for
foreground data migration and asynchronous pull for back-
ground data migration.

4. Conclusion
Dolphin is an elastic machine learning framework that pro-
vides the runtime optimization of framework configura-
tions. Dolphin’s Optimizer finds optimal configurations
by solving cost-based optimization problems formulated
by the metrics collected from running systems. To facili-
tate reconfiguration, Dolphin manages data (both training
data and model parameters) with Elastic Memory Store,
a distributed, elastic key-value store. The reconfiguration
actions are conducted through Elastic Memory Store API
calls. Dolphin is built on Apache REEF (Chun et al., 2013;
Weimer et al., 2015), a meta-framework for building dis-
tributed data processing applications. Dolphin is in active
development. We plan to open source Dolphin in the fu-
ture.
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