
Coded Elastic Computing

Yaoqing Yang, Pulkit Grover, Soummya Kar
Carnegie Mellon University

{yyaoqing, pgrover, soummyak}@andrew.cmu.edu

Matteo Interlandi, Saeed Amizadeh, Markus Weimer
Microsoft

{mainterl, saamizad, mweimer}@microsoft.com

Abstract
Cloud providers have recently introduced low-priority machines to reduce the
cost of computations. Exploiting such opportunity for machine learning tasks
is challenging inasmuch as low-priority machines can elastically leave (through
preemption) and join the computation at any time. In this paper, we design a new
technique called coded elastic computing enabling distributed machine learning
computations over elastic resources. The proposed technique allows machines
to transparently leave the computation without sacrificing the algorithm-level
performance, and, at the same time, flexibly reduce the workload at existing
machines when new machines join the computation. Thanks to the redundancy
provided by encoding, our approach is able to achieve similar computational cost
as the original (uncoded) method when all machines are present; the cost gracefully
increases when machines are preempted and reduces when machines join.

1 Introduction
New offerings from cloud-service providers allow exploiting under-utilized Virtual Machines (VMs)
at a fraction of the original cost [3, 1]. For example, Azure Batch provides low-priority machines
at about one-fifth of the cost of ordinary virtual machines [4]. Similarly, Amazon Spot Instances
provide machines at market price with a discount which can reach up to 90% with respect to regular
on-demand prices [2]. Such offerings, however, have the drawback that machines can be preempted
at any time if a high-priority job appears. This, in turn, will surface as a computation failure at
the application level. While common distributed machine learning frameworks are already built
with fault-tolerance [19, 5], they often assume that failures are transient and rare. Due to this
assumption, machine failures are often recovered by a “stop-the-world” scheme whereby the entire
system is forced to wait until regular execution on the failure machines are restored from previous
state (eventually on new machines). The above assumptions, however, do not necessarily hold for
failures due to machines being preempted because (1) these failures are permanent and local data
may not be accessible anymore; (2) several machines can be preempted altogether (up to 90% [18]);
(3) these failures add up to transient failures, therefore leading to more frequent disruptions during
computation; and (4) the computational framework may need to acquire additional machines to
compensate, meaning that data has to be copied on the new machines which will likely become
stragglers for the running computation. In practice, we observed situations at scale where the stop-the-
world scheme results in zero computation progress because, by the time a failure is recovered, a new
failure occurs. This results in the necessity to build an elastic run-time framework [20, 6] and related
failure-aware algorithms which can continue the computation and flexibly adapt in the presence of
failures. Another possible technique to deal with preemption is to view the preempted machines
as erasure-type faults and ignore them. Although machine learning algorithms are robust to small
transient faults, simply ignoring the computational results in these permanently-failed preempted
machines may result in algorithmic-level performance loss [20]. The influence of ignoring the
computation results for the preemption type of faults is also more severe than usual computation
faults because the number of failures can be really large [18]. Similarly, even if the data are redundant

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



in some applications, ignoring partial results may still lead to reduced confidence levels on the
prediction accuracy. It may also not be desirable from a customer’s perspective who often requires the
full dataset to be present during the entire training process in order to achieve the highest accuracy.

In order to deal with the aforementioned problems, in this paper we propose coded elastic computing:
a novel distributed learning framework allowing users to train their machine learning models over
preemptable machines. In our coded elastic computing framework machines are allowed to arbitrarily
join or leave during a distributed iterative learning task thanks to the introduction of redundancy
in the computation. Although coded elastic computing introduces redundancy using ideas from
error-correcting codes [15, 21, 9, 17, 26, 14, 24, 11, 10], and can let the computation continue when
a preemption failure happens like ordinary error-correcting codes, the way it utilizes the coded data
to deal with preemption is fundamentally different from existing works. More specifically, coded
elastic computing can flexibly change the workload of each machine at runtime based on the number
of available machines by selecting to use only a subset of the encoded data in a cyclic fashion.
Apart from providing fault-tolerance when machines are preempted, coded elastic computing is
also positively-elastic in that it can utilize the properties of the coded data to reduce the workload
at existing machines flexibly when new machines join the computation. We will show that the
coded elastic computing framework can make the computational cost at each machine scale inversely
with the number of machines, which leads to linear scaling of theoretical computational cost. The
proposed technique is also useful in other applications besides elastic computation when the number
of machines needs to be dynamically adjusted during a learning task, such as when the number of
machines is tuned as a hyper-parameter, or when the machines have to be reallocated to achieve
fairness [13] between users or the specific need of some users at runtime.

In this short paper, we first present a coded elastic matrix-vector multiplication algorithm to illustrate
the main idea. Then, we discuss the applicability of the proposed technique over broader learning
algorithms. Finally, we validate the approach with a set of experiments. More generalizations will be
provided online [22].

2 Resource-Elastic Coded Distributed Computing
We initially focus on the problem of matrix-vector multiplication for having a better theoretical
understanding of coded elastic computing. Before presenting the algorithm in Section 2.3, we
introduce the main idea of the paper in Section 2.1 and Section 2.2.

We consider the case when a data matrix X is stored distributedly at several machines. Suppose
the number of machines is P and, in the worst-case of preemption failures, there are at least L
machines that remain1. We will show that the parameter L is also equal to the recovery threshold,
the meaning of which will be clear in Section 2.1. In this paper, we consider repeatedly using the
same data but with different input vectors. For matrix multiplications, it means that we compute
Xwt for t = 1, 2, . . . for the same X. This computation primitive is applicable in training linear
models [25, 23, 12], PageRank [24], model-parallel deep neural networks [8] and many other machine
learning algorithms at the inference stage.

Suppose there are elastic events thereby existing machines can be preempted and new machines can
be added to the computation. To characterize the key components of these elastic events, we state the
following three properties:
Property 1. When a preemption failure happens, which machine(s) to be preempted is decided by the
resource allocator and is not known in advance.
Property 2. The preemption is permanent, meaning that the preempted machines are going to be
removed forever. However, new machines may join after an unknown time.
Property 3. After an elastic event happens, the entire system gets the information. That is, if some
machines leave or join, the other machines know immediately about which machines leave or join.

The second and the third properties differentiate the elastic failures from common faults and stragglers
because (1) new machines can join the computation, and (2) one may adapt the computation scheme
instantly after an elastic event and possibly utilize the newly available resources. In Section 2.1 and
Section 2.2, we provide the elastic data partitioning scheme to utilize resource elasticity actively.

1The parameter L, or a lower bound of L, is needed for exact computation. However, in many machine
learning tasks, one can often optimize with a subset of data due to data redundancy. In that case, knowledge of L
is not necessary.

2



2.1 Coded Data Partitioning in the Presence of Preempted Machines
We partition the data matrix X into L subsets S1,S2, . . . ,SL of equal size. If the total number of
data points is not divisible by L, we can use zero-padding. Next, we will use Xk to denote the matrix
composed by the k-th subset of data, k = 1, 2, . . . , L. Finally, we generate P coded data matrices
Xcoded

s , s = 1, 2, . . . , P , (P > L), in which each matrix is a linear combination of the form:

Xcoded
s =

L∑
k=1

gs,kXk (1)

where each gs,k is a random coefficient. The P coded data matrices are distributed to P workers.
In this way, the coded data Xcoded

s , s = 1, 2, . . . , P satisfy the following property with probability
one for a variety of choices of the linear coefficients gs,k, e.g., if gs,k’s are i.i.d. Gaussian random
variables:
Lemma 2.1. Suppose we want to compute the matrix-vector product Xw. Then, any L out of P
coded computation results Xcoded

s w, s = 1, 2, . . . , P are sufficient to recover the original (uncoded)
computation results Xkw, k = 1, 2, . . . , L, which are equivalent to Xw.

The recovery of the results is through solving L linear systems of the form Xcoded
s w =∑L

k=1 gs,kXkw. Lemma 2.1 is critical for the failure recovery. It essentially shows that no matter
which machines are preempted, as long as the number of remaining machines is not smaller than L,
the whole information of the original data is preserved in the remaining machines. This is why we
call the parameter L the recovery threshold. The parameter L is limited by the storage constraint at
each machine. The more redundancy we can add to the data, the lower recovery threshold we need,
and hence more failures we can tolerate. In our experiments, we use a redundancy factor of P/L
= 2, and hence we can at maximum tolerate failures when half of the machines are preempted. An
often-used coding technique is called systematic code, in which the linear coefficients satisfy

gs,k = 1{s=k}, if s ≤ L. (2)

In this case, the coded data at the first L machines Xcoded
s , s = 1, 2, . . . , L are the original data

Xk, k = 1, 2, . . . , L. This can provide backward-compatibility to switch between coded computing
and uncoded ordinary computing, and at the same time significantly reduce the cost of encoding the
data at the preprocessing stage (1).

2.2 Elastic Data Partitioning for Elastic Computation by Using Data In a Cyclic Way
According to Lemma 2.1, as long as the number of machines that are not preempted is greater or equal
to L, the remaining data using the coded data partitioning can preserve the whole information of the
original data. However, when the number of machines is strictly larger than L, it becomes redundant
to use all the coded data because the data at L machines already preserve the whole information. To
positively utilize all the remaining machines and achieve the parallel computing capabilities of the
extra machines, we select to use data in a cyclic fashion as shown in Figure 1. We use a systematic
code (see (2)) by which the first L of the P coded blocks Xcoded

s , s = 1, 2, . . . , P are the original data
Xk, k = 1, 2, . . . , L. In Figure 1 we use red to denote original data and blue to denote the remaining
coded data. In this example, the initial number of machines is P = 6 and the recover threshold is
L = 3. From figure (a) to (d), we show how to continue the computation when machines are gradually
preempted from 6 to 3 (machines correspond to the columns). Each machine is initially allocated
a single subset of coded data Xcoded

s , s = 1, 2, . . . , P , among which L subsets are the original data.
Each subset of data is represented as a column in each subfigure of Figure 1.

If no failures occur (see Figure 1(a)), to remove redundancy from the data, we partition each data
block (column) into P sub-blocks, and let each machine only use L out of P sub-blocks. By a
sub-block of data, we mean one small rectangle in Figure 1. If M ≥ 1 machines are preempted (see
Figure 1(b)-(d)), we partition each data block into P −M sub-blocks, and still let each node only
use L out of P −M sub-blocks. If new machines join, they download the coded data previously
used in some failed machines, and all the machines, including the ones that just join, use elastic data
partitioning based on the current number of available machines.

There are two advantages of this type of data usage (1) the overall selected data to use is of the same
size as the original data and the selected data across all remaining machines have the same size; and
(2) the selected data preserve the whole information of the original data, according to Lemma 2.1.
Thus, we can exactly recover the results while removing the redundancy in the way of using data.
These two properties will be formally introduced and proved in Theorem 2.1.

3



a1 x2 x3 x1+2x2+3x3 a1+4a2+9a3 a1+8a2+27a3

OriginaluData CodeduData

b1 b2 y3 y1+2y2+3y3 y1+4y2+9y3 b1+8b2+27b3

machineu1 machineu2 machineu3 machineu4 machineu5 machineu6

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

don'tuuse

c1 c2 c3

d2 d3

e3 e1+4e2+9e3

f1+4f2+9f3 f1+8f2+27f3

d1+d2+d3

e1+e2+e3

f1+f2+f3

(a) No preempted machine

Original Data Coded Data

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

failure/
pre-empted

don't use

don't use don't use

don't use don't use

don't use don't use

don't use don't use

don't use

(b) One preempted machine

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

failure/
pre-empted

failure/
pre-empted

don't use

don't use

don't use

don't use

(c) Two preempted machines
machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

failure/
pre-empted

failure/
pre-empted

failure/
pre-empted

(d) Three preempted machines
Figure 1: The main idea of elastic data partitioning is to use the data in a cyclic way. Each column of
data is stored at one machine. For each group (i.e., row block) of data at different machines, there are
enough number of sub-blocks that contain all the information. This cyclic way of using data leads to
linear scaling of the computational cost in the number of machines.

2.3 Coded Elastic Computing for Matrix-vector Multiplications

We provide the details of the coded elastic computing algorithm for the repeated matrix-vector
multiplication problem Xwt, t = 1, 2, . . . in Algorithm 1. We use Xcoded

k,j to represent the j-th sub-
block of the data at the k-th machine. We will call Xcoded

k,j ’s with the same j “the j-th group” of sub-
blocks which correspond to the j-th row block in any subfigure of Figure 1. We use Gj to represent
the collection of linear combination coefficients for the j-th group (row block) that are selected to

use. For example, for the first group (row block) in Figure 1(a), we have G1 =

[
1 0 0
1 4 9
1 8 27

]
because

the three selected sub-blocks are a1, a1 + 4a2 + 9a3 and a1 + 8a2 + 27a3.

Algorithm 1 Coded Elastic Computing for Matrix-Vector Multiplication
Input: The data matrix X, the number of machines P , the recovery threshold L, the linear
combination coefficients gs,k’s in equation (1) and the sequence of input vectors wt t = 1, 2, . . ..
Preprocessing: Partition the data X into L subsets and compute the coded subsets as in (1).
Online computation:
FOR each computation with input wt:

Broadcast: The master node sends wt to each worker.
FOR each group index j:

Gather: The k-th worker computes ut,k,j = Xcoded
k,j wt and sends ut,k,j to the master.

The master gathers vectors ut,k,j for all workers that use the j-th sub-block and obtains
the matrix ut,j which contains the results for the j-th group (row block).
Decode: The master node computes ut,jG

−1
j to obtain the results for the j-th group.

Output: The master node outputs Xwt.

Theorem 2.1. The coded elastic computing algorithm achieves the exact computation result of Xwt

for all t. Moreover, the size of the selected data to use at each machine is the same, and the overall
size of the selected data is the same as the size of the original data.

Proof. Recall that we call the sub-blocks on the same row block (in Figure 1) of the P different
blocks of data a group, and we use Xcoded

k,j to represent the coded sub-block of data that is at the k-th
machine and belongs to the j-th group. Let Xj be the collections of original data that belongs to the
j-th group. For example, in Figure 1(a), X6 represents the collection of original data [f1, f2, f3]

>.

4



Then, from the cyclic way of using data, we can see that when each machine uses L sub-blocks, the
overall number of used sub-blocks in each group isL. From Lemma 2.1, the results ut,k,j = Xcoded

k,j wt

for all the workers that use the coded data in the j-th group can be collected together to decode Xjwt.

The other claim can be seen from the figure, i.e., the area of the used data is always equal to the area
of the original data, and the area of the used data is the same across all remaining machines. We
prove this claim as follows. The size of the data in each of the L subsets is N/L. Thus, the used data
at each machine is the same number N

L
L

P−M = N/(P −M). There are P −M machines left, so
the overall size of the used data is N

P−M · (P −M) = N , which is the same as the original data.

Theorem 2.1 shows that our technique uses the same size of data as the original (uncoded) case. This
is desirable for memory-bound applications.
Remark 1. (Cost analysis) The encoding (preprocessing step) is a one-time cost. The decoding done
at the master has computational costO(PN), while the matrix-multiplication step at each worker has
cost O(dN/P ), where P is the number of workers and N × d is the size of the matrix X. Thus, the
decoding cost is smaller than the computational cost at each worker as long as d = Ω(P 2). Even if
d < Ω(P 2), we can partition the machines into smaller groups and respectively code each group. The
decoding complexity can be further reduced to O(N log2 P ) if Vandermonde systems are used [16].

3 Coded Elastic Computing for Linear Models
The cyclic way of elastic data partitioning applies to general coded computing techniques proposed
thus far and is not limited to matrix-vector multiplications. Due to the space limitation, we focus on
one application of coded computing for linear regression [15]. Consider the linear objective function:

f(w;X,y) =

n∑
i=1

(w>xi − yi)
2 + h(w). (3)

The vanilla gradient descent has the form wt+1 = wt − ηgt and gt = X>(Xwt − y) + ∂wh(wt).
When the data matrix X is large, the most time-consuming part is the computation of X>(Xwt−y).
We thus extend Algorithm 1 in the following way to compute X>(Xwt − y):

• Compute Xjwt (where Xj is the data in the j-th group, or the j-th row block in Figure 1
across different machines) for all group-index j in an elastic way using Algorithm 1;

• The master computes zjt = Xjwt − yj for all group-index j, where yj are the labels
corresponding to the data points in the j-th group;

• The master re-encodes zjt ’s using the (pre-computed) inverse generator matrix (G−1j )> to
obtain (G−1j )>zjt , and scatters the results to the workers that use the j-th group of data;

• Since data at workers are encoded using Gj , the reduced results from all the workers are∑
j

(Xj)>G>j (G−1j )>zjt =
∑
j

(Xj)>(Xjwt − yj) = X>(Xwt − y). (4)

Note that in the above extension of Algorithm 1, the workers also utilize the data as in Figure 1.

4 Implementation and Experimental Evaluation
The proposed coded elastic computing technique has been implemented on top of Apache REEF [7]
Elastic Group Communication (EGC) framework 2. REEF EGC provides an API allowing to
implement elastic computations by chaining fault-tolerant MPI-like primitives. In this short paper we
assess the performance of our elastic code computing approach through 2 mini-benchmarks.

Matrix-vector mini-benchmark. In this mini-benchmark, we test that indeed the time cost decreases
linearly with the increase in the number of machines available. We mimic an elastic computing
environment on Amazon EC2 by using different numbers of t2.medium instances to compute the
same matrix-vector product Xw. The matrix is randomly generated and with size 30000× 10000,
and it is partitioned initially into 3 submatrices of size 10000 × 10000. Then, they are encoded

2https://github.com/interesaaat/reef/tree/elastic-sync

5

https://github.com/interesaaat/reef/tree/elastic-sync


3 4 5 6
Number of machines

0

0.5

1

1.5

2

P
e
r-

it
e
ra

ti
o
n
 t
im

e
 (

n
o
rm

a
liz

e
d
)

(a) Matrix-vector mini-benchmark 1 2 3
0

0.5

1

1.5

2

Coded (all)
Coded (half)

Uncoded

(b) Linear model overhead

0 200 400 600 800
Number of iterations

1

1.1

1.2

1.3

1.4

1.5

1.6

G
e

n
e

ra
liz

a
ti
o

n
 e

rr
o

r 
(n

o
rm

a
liz

e
d

)

coded

ignore

noiseless

Distr-BGD exp 1

Distr-BGD exp 2

Distr-BGD exp 3

Distr-BGD exp 4

Distr-BGD exp 5

(c) Linear model error

Figure 2: Mini-benchmarks experiments (results normalized due to confidentiality).

into 6 submatrices of the same size, and each submatrix is stored at one machine (for a total of 6
machines). To mimic the elastic events, we change the number of available machines by injecting
artificial failures. The maximum number of failures is 3. The per-iteration overall time (including
both communication and computation) is shown in Figure 2(a). The result is averaged using 20
independent trials. As we can see, the coded elastic computing technique can utilize the extra
machines when the number of machines increases.

Linear model mini-benchmark. In this experiment, we test a coded implementation of linear
regression using line-search-based batch gradient descent (the same setting as the baseline [20]).
We run the test over 20 machines on a Microsoft internal multi-tenancy cluster. Each data point in
the dataset has 3352 features, and we sample 10000 data for training and 10000 data for testing.
We generate random failures and allow REEF EGC to reschedule new machines when failures
occur. We start with Figure 2(b) where we plot the time for each iteration. In theory, when all
the workers are present, the computational cost per iteration should be the same as the uncoded
case. However, the coded method (all) has slight overhead due to decoding cost. The coded method
(half) shows the cost when only half of the workers are running, which is, as expected, twice the
cost of the uncoded method. In Figure 2(c) we report the generalization error and we compare our
coded elastic computing technique with three baselines, namely noiseless (no failure), ignore the
failure and continue, and an existing algorithm called Elastic Distr-BGD [20]. The coded method
can achieve the same convergence behavior as the noiseless case, while the ignore method achieves
worst generalization error. In the figure, we show 5 different experiments on Distr-BGD using the
same failure probability but different realizations. The convergence of Distr-BGD depends on when
a failure occurs and can lead to different algorithm performance. This is because the Distr-BGD
keeps using previous gradient vectors at the failed machines, and this can (1) lead to overfitting, and
(2) make the optimization miss the minimum point. In the plot of Distr-BGD, the valley part is due
to overfitting, and the sudden change to near flat loss growth is because when the gradient descent
has missed the optimal point of empirical training loss, the fixed gradient at the failure nodes makes
the line search choose the smallest step size. In some cases, the Distr-BGD works extremely well
because the fixed gradients act like momentum and can improve the speed of convergence.

From the experiment results, we can see that the coded elastic computing technique can obtain the
same convergence behavior as ordinary gradient-descent-based algorithms but can elastically allocate
the workload based on the number of available machines without moving data around.

5 Conclusions

The coded elastic computing framework presented in this paper can deal with new cloud offerings
where machines can leave and join during the computation. Our framework handles the elastic events
in a positive way, meaning that when machines leave, it shifts the computation to the remaining
workers, and when new machines join the computation, it actively reduces the workload of existing
machines without the reallocation of data. We prove that the coded elastic computing technique can
achieve the same memory-access cost as the noiseless case, and hence is optimal for memory-bound
applications. Using experiments in both Amazon EC2 and on a Microsoft multi-tenancy cluster, we
show that the coded elastic computing technique can achieve the same convergence behavior as if no
failure occurs, and can dynamically adjust working loads respect to the number of remaining workers.

6



References
[1] AWS Spot Instances. https://aws.amazon.com/ec2/spot/, 2018.

[2] AWS Spot Instances Prices. https://aws.amazon.com/ec2/spot/pricing/, 2018.

[3] Azure Batch. https://docs.microsoft.com/en-us/azure/batch/
batch-low-pri-vms, 2018.

[4] Azure Batch Pricing. https://azure.microsoft.com/en-us/pricing/details/
batch/, 2018.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 265–283, 2016.

[6] B.-G. Chun, T. Condie, Y. Chen, B. Cho, A. Chung, C. Curino, C. Douglas, M. Interlandi,
B. Jeon, J. S. Jeong, et al. Apache REEF: Retainable evaluator execution framework. ACM
Transactions on Computer Systems (TOCS), 35(2):5, 2017.

[7] B.-G. Chun, T. Condie, Y. Chen, B. Cho, A. Chung, C. Curino, C. Douglas, M. Interlandi,
B. Jeon, J. S. Jeong, G. Lee, Y. Lee, T. Majestro, D. Malkhi, S. Matusevych, B. Myers,
M. Mykhailova, S. Narayanamurthy, J. Noor, R. Ramakrishnan, S. Rao, R. Sears, B. Sezgin,
T. Um, J. Wang, M. Weimer, and Y. Yang. Apache reef: Retainable evaluator execution
framework. ACM Trans. Comput. Syst., 35(2):5:1–5:31, Oct. 2017.

[8] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover. A unified coded deep neural network
training strategy based on generalized polydot codes. In IEEE International Symposium on
Information Theory (ISIT), pages 1585–1589. IEEE, 2018.

[9] S. Dutta, V. Cadambe, and P. Grover. Short-dot: Computing large linear transforms distributedly
using coded short dot products. In Advances In Neural Information Processing Systems, pages
2100–2108, 2016.

[10] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover. On the optimal
recovery threshold of coded matrix multiplication. arXiv preprint arXiv:1801.10292, 2018.

[11] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover. On the optimal
recovery threshold of coded matrix multiplication. In Communication, Control, and Computing
(Allerton), 2017 55th Annual Allerton Conference on, pages 1264–1270. IEEE, 2017.

[12] F. Haddadpour, Y. Yang, M. Chaudhari, V. R. Cadambe, and P. Grover. Straggler-resilient and
communication-efficient distributed iterative linear solver. arXiv preprint arXiv:1806.06140,
2018.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker, and
I. Stoica. Mesos: A platform for fine-grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[14] C. Karakus, Y. Sun, S. Diggavi, and W. Yin. Straggler mitigation in distributed optimization
through data encoding. In Advances in Neural Information Processing Systems, pages 5434–
5442, 2017.

[15] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up distributed
machine learning using codes. IEEE Transactions on Information Theory, 64(3):1514–1529,
2018.

[16] L. Li. On the arithmetic operational complexity for solving vandermonde linear equations.
Japan journal of industrial and applied mathematics, 17(1):15, 2000.

[17] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr. A fundamental tradeoff between
computation and communication in distributed computing. IEEE Transactions on Information
Theory, 64(1):109–128, 2018.

7

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/pricing/
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://azure.microsoft.com/en-us/pricing/details/batch/
https://azure.microsoft.com/en-us/pricing/details/batch/


[18] K. Mahajan, M. Chowdhury, A. Akella, and S. Chawla. Dynamic query re-planning using
QOOP. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 253–267, Carlsbad, CA, 2018. USENIX Association.

[19] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar.
Mllib: Machine learning in apache spark. Journal of Machine Learning Research, 17(34):1–7,
2016.

[20] S. Narayanamurthy, M. Weimer, D. Mahajan, T. Condie, S. Sellamanickam, and S. S. Keerthi.
Towards resource-elastic machine learning. In NIPS 2013 BigLearn Workshop, 2013.

[21] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis. Gradient coding: Avoiding stragglers
in distributed learning. In International Conference on Machine Learning, pages 3368–3376,
2017.

[22] P. G. S. K. S. A. M. W. Y. Yang, M. Interlandi. Coded elastic computing. to appear, 2018.

[23] Y. Yang, M. Chaudhari, P. Grover, and S. Kar. Coded iterative computing using substitute
decoding. arXiv preprint arXiv:1805.06046, 2018.

[24] Y. Yang, P. Grover, and S. Kar. Coded distributed computing for inverse problems. In Advances
in Neural Information Processing Systems, pages 709–719, 2017.

[25] Y. Yang, P. Grover, and S. Kar. Coding for a single sparse inverse problem. In IEEE International
Symposium on Information Theory (ISIT), pages 1575–1579, 2018.

[26] Q. Yu, M. Maddah-Ali, and S. Avestimehr. Polynomial codes: an optimal design for high-
dimensional coded matrix multiplication. In Advances in Neural Information Processing
Systems, pages 4403–4413, 2017.

8


	Introduction
	Resource-Elastic Coded Distributed Computing
	Coded Data Partitioning in the Presence of Preempted Machines
	Elastic Data Partitioning for Elastic Computation by Using Data In a Cyclic Way
	Coded Elastic Computing for Matrix-vector Multiplications

	Coded Elastic Computing for Linear Models
	Implementation and Experimental Evaluation
	Conclusions

