
Coded Elastic Computing

Yaoqing Yang*, Matteo Interlandi**, Pulkit Grover*, Soummya Kar*, Saeed Amizadeh**, Markus Weimer**

* Carnedie Mellon University ** Microsoft

• “Stop-the-world”: cannot deal with frequent and a large number

of machine preemptions;

 may achieve zero progress according to our observation.

• Ignore: can lead to reduced learning performance;

 not acceptable from a customer’s perspective.

• Dynamic task allocation: requires frequent data movement.

• Algorithm-based elastic computing [1]: fault-dependent

 variance on the final result.

Background: Introduction to Coded Computing [2-7]

Cloud providers introduced low-priority machines to reduce the

computation cost, but these machines can

• elastically leave through preemption (up to 90%);

• unpredictably join the computation at any time.

Thus, we need to design fault-aware techniques that can

• transparently continue the computation in the presence of

preemptions;

• positively utilize the newly available resources in a fast and adaptive

way;

• seamlessly transit between different configurations with little or no

data movement;

Introduction

References

Existing Techniques

Replication coded computing

Definition of elasticity: seamless transitions between

optimal configurations with zero data movement at

existing machines.

[1] S. Narayanamurthy, M. Weimer, D. Mahajan, T. Condie, S. Sellamanickam, and S. S. Keerthi, Towards resource-elastic

machine learning, NIPS 2013 BigLearn Workshop

[2] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr. A fundamental tradeoff between computation and

communication in distributed computing, IEEE Transactions on Information Theory

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up distributed machine learning

using codes, ISIT 2016.

[4] S. Dutta, V. Cadambe, and P. Grover. Short-dot: Computing large linear transforms distributedly using coded short

dot products, NIPS 2016.

[5] R. Tandon, Q. Lei, A. Dimakis, N. Karampatziakis, Gradient Coding: Avoiding Stragglers in Distributed Learning,

ICML 2017

[6] N. S. Ferdinand and S. C. Draper. Anytime coding for distributed computation. Allerton 2016.

[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Polynomial codes: an optimal design for high-dimensional coded

matrix multiplication. NIPS 2017.

[8] C. Karakus, Y. Sun, S. Diggavi, W. Yin, Straggler Mitigation in Distributed Optimization Through Data Encoding,

NIPS 2017

[9] RK Maity, AS Rawat, A Mazumdar , Robust Gradient Descent via Moment Encoding with LDPC Codes, SysML 2018

[10] Z. Charles, D. Papailiopoulos, J. Ellenberg, Approximate gradient coding via sparse random graphs

[11] M. Weimer, Y. Chen, B. Chun, T. Condie, C. Curino, C. Douglas, Y. Lee, T. Majestro, D. Malkhi, S. Matusevych, Reef:

Retainable evaluator execution framework, Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pp. 1343—1355

(a) matrix-vector mini-benchmark

experiment on Amaon EC2:

(b) Linear model mini-benchmark

experiment on Apache REEF

[11]: computation time overhead

(c) Generalization error of the linear

model: Distr-BGD can overfit

and cross the optimal point (we

use line search)

(a)

(c)

(b)

reduced computation time

(a) Matrix multiplications: can achieve elastic transitions between

optimal configuration points (optimal in storage cost and

computation complexity) with zero data movement.

(b) Linear model: can maintain all the data even when there are

pre-emption type of failures; have near optimal convergence.

(c) The decoding cost cannot be neglected, although in scaling-

sense vanishing when the dimension of data is large.

