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• “Stop-the-world”: cannot deal with frequent and a large number 

of machine preemptions;  

            may achieve zero progress according to our observation. 

• Ignore: can lead to reduced learning performance;  

            not acceptable from a customer’s perspective. 

• Dynamic task allocation: requires frequent data movement. 

• Algorithm-based elastic computing [1]: fault-dependent  

            variance on the final result. 

Background: Introduction to Coded Computing [2-7] 

Cloud providers introduced low-priority machines to reduce the 

computation cost, but these machines can  

• elastically leave through preemption (up to 90%); 

• unpredictably join the computation at any time. 

 

Thus, we need to design fault-aware techniques that can 

• transparently continue the computation in the presence of 

preemptions; 

• positively utilize the newly available resources in a fast and adaptive 

way; 

• seamlessly transit between different configurations with little or no 

data movement; 
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(a) matrix-vector mini-benchmark 

experiment on Amaon EC2: 

 

(b) Linear model mini-benchmark 

experiment on Apache REEF 

[11]: computation time overhead 

(c) Generalization error of the linear 

model: Distr-BGD can overfit 

and cross the optimal point (we 

use line search) 

(a) 

(c) 

(b) 

reduced computation time 

(a) Matrix multiplications: can achieve elastic transitions between 

optimal configuration points (optimal in storage cost and 

computation complexity) with zero data movement. 

(b) Linear model: can maintain all the data even when there are 

pre-emption type of failures; have near optimal convergence. 

(c) The decoding cost cannot be neglected, although in scaling-

sense vanishing when the dimension of data is large. 


