
Templates
for scalable data analysis

2 Synchronous Templates

Amr Ahmed, Alexander J Smola, Markus Weimer
Yahoo! Research & UC Berkeley & ANU

Monday, April 16, 2012

Running Example

Inbox

Spam

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Webmail
UI

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Webmail
UI

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Webmail
UI

Logged
event

Monday, April 16, 2012

Running Example

Inbox

Spam

Spam
Filter

Webmail
UI

Logged
event

Monday, April 16, 2012

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Training

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

PredictionTraining

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Prediction

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Prediction

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Prediction

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Prediction

Raw Data Example Model
Monday, April 16, 2012

Example
Formation

ML Workflow

Log Files

Images

Text
Geodata

Videos

Sound

Strokes

Prediction

Raw Data Example Model
Monday, April 16, 2012

• Example Formation in Pig
• Modeling todayHadoop, Spark, Pregel• Future
Declarative Systems

Monday, April 16, 2012

Example Formation

Monday, April 16, 2012

Example Formation

Log
Files

EMail

Monday, April 16, 2012

Example Formation

Log
Files

EMail Bag of
WordsID

Monday, April 16, 2012

Example Formation

Log
Files

EMail Bag of
WordsID

LabelID

Monday, April 16, 2012

Bag of
WordsLabel

Example Formation

Log
Files

EMail Bag of
WordsID

LabelID

Monday, April 16, 2012

Bag of
WordsLabelExample

Example Formation

Log
Files

EMail Bag of
WordsID

LabelID

Monday, April 16, 2012

Bag of
WordsLabelExample

Example Formation

Log
Files

EMail Bag of
WordsID

LabelID

Feature Extraction

Monday, April 16, 2012

Bag of
WordsLabelExample

Example Formation

Log
Files

EMail Bag of
WordsID

LabelID

Feature Extraction

Label Extraction

Monday, April 16, 2012

Requirements

Log
Files

EMail

Monday, April 16, 2012

Requirements

Log
Files

EMail Bag of
WordsID

LabelID

Data
Parallel

Functions

Data
Parallel

Functions

Monday, April 16, 2012

Bag of
WordsLabel

Requirements

Log
Files

EMail Bag of
WordsID

LabelID

Large Scale
Join

Monday, April 16, 2012

Apache Pig

• Relational Query Language
• Similar to SQL
• Performs runtime

optimizations
• Executes Queries on

Apache Hadoop
• Developed and heavily used

by Yahoo!
• Open Source (Apache)

http://pig.apache.org

Monday, April 16, 2012

http://pig.apache.org
http://pig.apache.org

Pig: Example Formation

• Feature and Label Extraction
• User Defined Function
• Applied via FOREACH … GENERATE

• Example formation
• JOIN between the outputs of the above

Monday, April 16, 2012

Machine Learning in MapReduce

Monday, April 16, 2012

MapReduce

• Parallel, Distributed programming framework

• User defines two functions:
• map(x) emits (key, value) pairs
• reduce(k, x[]) gets all values for a key,

produces output

Monday, April 16, 2012

MapReduce

Monday, April 16, 2012

MapReduce

k v

k v

k v

Map

Monday, April 16, 2012

MapReduce

k v

k v

k v

Map GroupBy
(Shuffle)

Reduce

Monday, April 16, 2012

k

k

MapReduce

k v

k v

k v

Map GroupBy
(Shuffle)

Reduce

Monday, April 16, 2012

k

k

MapReduce

k v

k v

k v

Map GroupBy
(Shuffle)

Reduce

Monday, April 16, 2012

k

k

MapReduce

k v

k v

k v

Map GroupBy
(Shuffle)

Reduce

Monday, April 16, 2012

k

k

MapReduce

k v

k v

k

v

Map GroupBy
(Shuffle)

Reduce

Monday, April 16, 2012

k

k

k

k

MapReduce

k v

k v

k

v

Map GroupBy
(Shuffle)

Reduce

Monday, April 16, 2012

k

k

k

k

MapReduce

k

k v

k

Map GroupBy
(Shuffle)

v

Reduce

Monday, April 16, 2012

k

k

k

k

MapReduce

k

k v

k

Map GroupBy
(Shuffle)

v

Reduce

Monday, April 16, 2012

k

k

k

k

MapReduce

k

k v

k

Map GroupBy
(Shuffle)

v

v

Reduce

Monday, April 16, 2012

• Open Source MapReduce Implementation:
• HDFS: Distributed FileSystem
• YARN: Resource Management
• MapReduce: Programming Framework

http://hadoop.apache.org

Monday, April 16, 2012

http://pig.apache.org
http://pig.apache.org

• Open Source MapReduce Implementation:
• HDFS: Distributed FileSystem
• YARN: Resource Management
• MapReduce: Programming Framework

http://hadoop.apache.org

New in
Hadoop .23

Monday, April 16, 2012

http://pig.apache.org
http://pig.apache.org

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Author’s address: AT&T Laboratories—Research, Room A235, 180 Park Avenue, Florham Park, NJ
07932, e-mail: mkearns@research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0983 $5.00

Journal of the ACM, Vol. 45, No. 6, November 1998, pp. 983–1006.

MapReduce for ML
• Learning algorithm can

access the learning problem
only through a statistical
query oracle

• The statistical query oracle
returns an estimate of the
expectation of a function
f(x,y) (averaged over the
data distribution).

Monday, April 16, 2012

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling
every generation, is projected to last between 10 and 20 more years for silicon based circuits [10].
By keeping clock frequency fixed, but doubling the number of processing cores on a chip, one can
maintain lower power while doubling the speed of many applications. This has forced an industry-
wide shift to multicore.

We thus approach an era of increasing numbers of cores per chip, but there is as yet no good frame-
work for machine learning to take advantage of massive numbers of cores. There are many parallel
programming languages such as Orca, Occam ABCL, SNOW, MPI and PARLOG, but none of these
approaches make it obvious how to parallelize a particular algorithm. There is a vast literature on
distributed learning and data mining [18], but very little of this literature focuses on our goal: A gen-
eral means of programming machine learning on multicore. Much of this literature contains a long

MapReduce for ML
• Rephrase oracle in

summation form.

• Map: Calculate function
estimates over sub-groups of
data.

• Reduce: Aggregate the
function estimates from
various sub-groups.

Monday, April 16, 2012

Example: Gradient

(x, y)1

(x, y)2

(x, y)3

(x, y)4

Monday, April 16, 2012

Example: Gradient

(x, y)1 g1

g2

g3

g4

(x, y)2

(x, y)3

(x, y)4

ComputeGradient

Monday, April 16, 2012

Example: Gradient

(x, y)1 g1

g2

g3

g4

(x, y)2

(x, y)3

(x, y)4

ComputeGradient

∑ g

Monday, April 16, 2012

Example: Gradient

(x, y)1 g1

g2

g3

g4

(x, y)2

(x, y)3

(x, y)4

ComputeGradient

∑ gMap

Monday, April 16, 2012

Example: Gradient

(x, y)1 g1

g2

g3

g4

(x, y)2

(x, y)3

(x, y)4

ComputeGradient

∑ gMap Reduce

Monday, April 16, 2012

http://mahout.apache.org

• Machine Learning Library
• Implementations of many algorithms, both on

Hadoop MapReduce and stand-alone
• Open Source (Apache)
• Welcoming, helpful community

Monday, April 16, 2012

• Recommender Systems, e.g.
• User and Item based recommenders
• Collaborative Filtering

• Clustering (K-Means, Mean Shift, …)
• Topic Models (LDA)
• Supervised ML

• (Logistic) Regression
• Linear SVMs
• Decision Trees and Forests

Monday, April 16, 2012

Further Reading

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Author’s address: AT&T Laboratories—Research, Room A235, 180 Park Avenue, Florham Park, NJ
07932, e-mail: mkearns@research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0983 $5.00

Journal of the ACM, Vol. 45, No. 6, November 1998, pp. 983–1006.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Author’s address: AT&T Laboratories—Research, Room A235, 180 Park Avenue, Florham Park, NJ
07932, e-mail: mkearns@research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0983 $5.00

Journal of the ACM, Vol. 45, No. 6, November 1998, pp. 983–1006.

Monday, April 16, 2012

Further Reading

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Author’s address: AT&T Laboratories—Research, Room A235, 180 Park Avenue, Florham Park, NJ
07932, e-mail: mkearns@research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0983 $5.00

Journal of the ACM, Vol. 45, No. 6, November 1998, pp. 983–1006.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Author’s address: AT&T Laboratories—Research, Room A235, 180 Park Avenue, Florham Park, NJ
07932, e-mail: mkearns@research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/1100-0983 $5.00

Journal of the ACM, Vol. 45, No. 6, November 1998, pp. 983–1006.

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling
every generation, is projected to last between 10 and 20 more years for silicon based circuits [10].
By keeping clock frequency fixed, but doubling the number of processing cores on a chip, one can
maintain lower power while doubling the speed of many applications. This has forced an industry-
wide shift to multicore.

We thus approach an era of increasing numbers of cores per chip, but there is as yet no good frame-
work for machine learning to take advantage of massive numbers of cores. There are many parallel
programming languages such as Orca, Occam ABCL, SNOW, MPI and PARLOG, but none of these
approaches make it obvious how to parallelize a particular algorithm. There is a vast literature on
distributed learning and data mining [18], but very little of this literature focuses on our goal: A gen-
eral means of programming machine learning on multicore. Much of this literature contains a long

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling
every generation, is projected to last between 10 and 20 more years for silicon based circuits [10].
By keeping clock frequency fixed, but doubling the number of processing cores on a chip, one can
maintain lower power while doubling the speed of many applications. This has forced an industry-
wide shift to multicore.

We thus approach an era of increasing numbers of cores per chip, but there is as yet no good frame-
work for machine learning to take advantage of massive numbers of cores. There are many parallel
programming languages such as Orca, Occam ABCL, SNOW, MPI and PARLOG, but none of these
approaches make it obvious how to parallelize a particular algorithm. There is a vast literature on
distributed learning and data mining [18], but very little of this literature focuses on our goal: A gen-
eral means of programming machine learning on multicore. Much of this literature contains a long

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling
every generation, is projected to last between 10 and 20 more years for silicon based circuits [10].
By keeping clock frequency fixed, but doubling the number of processing cores on a chip, one can
maintain lower power while doubling the speed of many applications. This has forced an industry-
wide shift to multicore.

We thus approach an era of increasing numbers of cores per chip, but there is as yet no good frame-
work for machine learning to take advantage of massive numbers of cores. There are many parallel
programming languages such as Orca, Occam ABCL, SNOW, MPI and PARLOG, but none of these
approaches make it obvious how to parallelize a particular algorithm. There is a vast literature on
distributed learning and data mining [18], but very little of this literature focuses on our goal: A gen-
eral means of programming machine learning on multicore. Much of this literature contains a long

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling
every generation, is projected to last between 10 and 20 more years for silicon based circuits [10].
By keeping clock frequency fixed, but doubling the number of processing cores on a chip, one can
maintain lower power while doubling the speed of many applications. This has forced an industry-
wide shift to multicore.

We thus approach an era of increasing numbers of cores per chip, but there is as yet no good frame-
work for machine learning to take advantage of massive numbers of cores. There are many parallel
programming languages such as Orca, Occam ABCL, SNOW, MPI and PARLOG, but none of these
approaches make it obvious how to parallelize a particular algorithm. There is a vast literature on
distributed learning and data mining [18], but very little of this literature focuses on our goal: A gen-
eral means of programming machine learning on multicore. Much of this literature contains a long

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general way, we formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact
learnable with classification noise in Valiant’s model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; I.2.
[Artificial Intelligence]; I.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Tutorial @ KDD 2011
http://www.slideshare.net/hadoop

Monday, April 16, 2012

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling
every generation, is projected to last between 10 and 20 more years for silicon based circuits [10].
By keeping clock frequency fixed, but doubling the number of processing cores on a chip, one can
maintain lower power while doubling the speed of many applications. This has forced an industry-
wide shift to multicore.

We thus approach an era of increasing numbers of cores per chip, but there is as yet no good frame-
work for machine learning to take advantage of massive numbers of cores. There are many parallel
programming languages such as Orca, Occam ABCL, SNOW, MPI and PARLOG, but none of these
approaches make it obvious how to parallelize a particular algorithm. There is a vast literature on
distributed learning and data mining [18], but very little of this literature focuses on our goal: A gen-
eral means of programming machine learning on multicore. Much of this literature contains a long

Trouble
• ML is iterative

• Each iteration is a Job

• Overhead per job (>45s)
• Scheduling
• Program Distribution
• Data Loading and Parsing
• State Transfer

Monday, April 16, 2012

Map-Reduce for Machine Learning on Multicore

Cheng-Tao Chu ∗

chengtao@stanford.edu
Sang Kyun Kim ∗

skkim38@stanford.edu
Yi-An Lin ∗

ianl@stanford.edu

YuanYuan Yu ∗

yuanyuan@stanford.edu
Gary Bradski ∗†

garybradski@gmail
Andrew Y. Ng ∗

ang@cs.stanford.edu

Kunle Olukotun ∗

kunle@cs.stanford.edu

∗. CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

†. Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling
every generation, is projected to last between 10 and 20 more years for silicon based circuits [10].
By keeping clock frequency fixed, but doubling the number of processing cores on a chip, one can
maintain lower power while doubling the speed of many applications. This has forced an industry-
wide shift to multicore.

We thus approach an era of increasing numbers of cores per chip, but there is as yet no good frame-
work for machine learning to take advantage of massive numbers of cores. There are many parallel
programming languages such as Orca, Occam ABCL, SNOW, MPI and PARLOG, but none of these
approaches make it obvious how to parallelize a particular algorithm. There is a vast literature on
distributed learning and data mining [18], but very little of this literature focuses on our goal: A gen-
eral means of programming machine learning on multicore. Much of this literature contains a long

Trouble
• ML is iterative

• Each iteration is a Job

• Overhead per job (>45s)
• Scheduling
• Program Distribution
• Data Loading and Parsing
• State Transfer

Monday, April 16, 2012

Beyond MapReduce today

Monday, April 16, 2012

Solutions

• Local (subsampling)
• MPI
• Spark
• Pregel

Monday, April 16, 2012

Subsampling

• Form examples on the cluster

• Subsample the data on the cluster

• Train a model on a single machine

Monday, April 16, 2012

Model Averaging

Per-Partition Training Averaging
Monday, April 16, 2012

Model Averaging

Per-Partition Training Averaging
Monday, April 16, 2012

Model Averaging

}
Per-Partition Training Averaging

Monday, April 16, 2012

Model Averaging

}
Per-Partition Training Averaging

Map

Monday, April 16, 2012

Model Averaging

}
Per-Partition Training Averaging

ReduceMap

Monday, April 16, 2012

Message Passing Interface

• Mature HPC standard

• Supported on many clusters (e.g. OpenMPI)
• Available in C, Fortran and Scripting

Languages

• Key operation here: AllReduce

Monday, April 16, 2012

AllReduce

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

Synchronization
Barrier

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

Monday, April 16, 2012

AllReduce

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

… AllReduce()

State Persists Across Iterations

Monday, April 16, 2012

A Reliable Effective Terascale Linear Learning System

Alekh Agarwal
Department of EECS

UC Berkeley

alekh@cs.berkeley.edu

Olivier Chapelle
Yahoo! Research

Santa Clara, CA

chap@yahoo-inc.com

Miroslav Dudík
Yahoo! Research

New York, NY

mdudik@yahoo-inc.com

John Langford
Yahoo! Research

New York, NY

jl@yahoo-inc.com

ABSTRACT

We present a system and a set of techniques for learning
linear predictors with convex losses on terascale datasets,
with trillions of features,1 billions of training examples and
millions of parameters in an hour using a cluster of 1000
machines. Individually none of the component techniques
is new, but the careful synthesis required to obtain an effi-
cient implementation is a novel contribution. The result is,
up to our knowledge, the most scalable and efficient linear
learning system reported in the literature. We describe and
thoroughly evaluate the components of the system, showing
the importance of the various design choices.

1. INTRODUCTION

Distributed machine learning is a research area that has
seen a growing body of literature in recent years. Much work
focuses on problems of the form

min
w∈Rd

n�

i=1

�(w�xi; yi) + λR(w), (1)

where xi is the feature vector of the i-th example, yi is the
label, w is the linear predictor, � is a loss function and R a
regularizer. Much of this work exploits the natural decom-
posability over examples in (1), partitioning the examples
over different nodes in a distributed environment such as a
cluster.

Perhaps the simplest learning strategy when the number
of samples n is very large is to subsample a smaller set of
examples that can be tractably learned with. However, this
strategy only works if the problem is simple enough or the
number of parameters is very small. The setting of interest
here is when a large number of samples is really needed to
learn a good model, and distributed algorithms are a natural
choice for such scenarios.
1The number of features here refers to the number of non-
zero entries in the data matrix.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Some prior works (McDonald et al., 2010; Zinkevich et al.,
2010) consider online learning with averaging and Duchi
et al. (2010a) propose gossip-style message passing algo-
rithms extending the existing literature on distributed con-
vex optimization (Bertsekas and Tsitsiklis, 1989). Langford
et al. (2009) analyze a delayed version of distributed online
learning. Dekel et al. (2010) consider mini-batch versions of
online algorithms which are extended to delay-based updates
in Agarwal and Duchi (2011). A recent article of Boyd et al.
(2011) describes an application of the ADMM technique for
distributed learning problems. GraphLab (Low et al., 2010)
is a parallel computation framework on graphs. More closely
related to our work is that of Teo et al. (2007) who use MPI2

to parallelize a bundle method for optimization.
However, all of the aforementioned approaches seem to

leave something to be desired empirically when deployed on
large clusters. In particular their throughput—measured as
the input size divided by the wall clock running time—is
smaller than the the I/O interface of a single machine for
almost all parallel learning algorithms (Bekkerman et al.,
2011, Part III, page 8). The I/O interface is an upper bound
on the speed of the fastest sequential algorithm since all
sequential algorithms are limited by the network interface
in acquiring data. In contrast, we were able to achieve a
throughput of 500M features/s, which is about a factor of 5
faster than the 1Gb/s network interface of any one node.
An additional benefit of our system is its compatibility

with MapReduce clusters such as Hadoop (unlike MPI-based
systems) and minimal additional programming effort to par-
allelize existing learning algorithms (unlike MapReduce ap-
proaches).
One of the key components in our system is a communi-

cation infrastructure that efficiently accumulates and broad-
casts values across all nodes of a computation. It is function-
ally similar to MPI AllReduce (hence we use the name), but
it takes advantage of and is compatible with Hadoop so that
programs are easily moved to data, automatic restarts on
failure provide robustness, and speculative execution speeds
completion. Our optimization algorithm is a hybrid on-
line+batch algorithm with non-uniform parameter averag-
ing.
The paper is organized as follows. In Section 2 we discuss

the approach used and the communication infrastructure we
setup. Most of our effort is devoted to Section 3 where we
conduct many experiments comparing with existing algo-

2http://www.mcs.anl.gov/research/projects/mpi/

ar
X

iv
:1

11
0.

41
98

v2
 [

cs
.L

G
]

12
 F

eb
 2

01
2

Hadoop AllReduce
• Use Hadoop for

• Data local scheduling
• Good machine

identification

• Use MPI for
• AllReduce

• 30x Speedup over
Hadoop MapReduce http://hunch.net/~vw

Monday, April 16, 2012

http://pig.apache.org
http://pig.apache.org

MPI: Conclusion
• The Good

• Computational Performance
• Well established software available

• The Bad
• No fault tolerance

• The Ugly
• Ignorance of shared clusters
• Systems-Level decisions at the algorithm layer

Monday, April 16, 2012

Spark: Intro

• Open Source cluster computation framework

• Developed at UC Berkeley by the AMP Lab

• Aimed at interactive and iterative use cases

• 30x faster than Hadoop for those

• User interface: Embedded Domain Specific
Language in Scala

http://spark-project.org/

Monday, April 16, 2012

http://spark-project.org/
http://spark-project.org/

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Monday, April 16, 2012

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Monday, April 16, 2012

Spark: Example
Loads data into

(distributed)
main memory

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Monday, April 16, 2012

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Monday, April 16, 2012

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Monday, April 16, 2012

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Computes a
gradient per
data point

Monday, April 16, 2012

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Computes a
gradient per
data point

Sums them up

Monday, April 16, 2012

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Monday, April 16, 2012

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Monday, April 16, 2012

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Spark: Example

val points = spark.textFile(...).
 map(parsePoint).
 partitionBy(HashPartitioner(NODES)).
 cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(computeGradient(_,w)).reduce(_ + _)

 w -= gradient
}

Trouble!
(physical layer
shows through)

Monday, April 16, 2012

Spark: Conclusion
• The Good

• Speed (ca. MPI speed)
• Fault Tolerance
• Ease of Programming

• The Bad
• Main Memory Assumption

• The Ugly
• Systems aspects creep up

Monday, April 16, 2012

Pregel: A System for Large-Scale Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,

Naty Leiser, and Grzegorz Czajkowski
Google, Inc.

{malewicz,austern,ajcbik,dehnert,ilan,naty,gczaj}@google.com

ABSTRACT

Many practical computing problems concern large graphs.

Standard examples include the Web graph and various so-

cial networks. The scale of these graphs—in some cases bil-

lions of vertices, trillions of edges—poses challenges to their

efficient processing. In this paper we present a computa-

tional model suitable for this task. Programs are expressed

as a sequence of iterations, in each of which a vertex can

receive messages sent in the previous iteration, send mes-

sages to other vertices, and modify its own state and that of

its outgoing edges or mutate graph topology. This vertex-

centric approach is flexible enough to express a broad set of

algorithms. The model has been designed for efficient, scal-

able and fault-tolerant implementation on clusters of thou-

sands of commodity computers, and its implied synchronic-

ity makes reasoning about programs easier. Distribution-

related details are hidden behind an abstract API. The result

is a framework for processing large graphs that is expressive

and easy to program.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-

ming—Distributed programming ; D.2.13 [Software Engi-
neering]: Reusable Software—Reusable libraries

General Terms

Design, Algorithms

Keywords

Distributed computing, graph algorithms

1. INTRODUCTION

The Internet made the Web graph a popular object of

analysis and research. Web 2.0 fueled interest in social net-

works. Other large graphs—for example induced by trans-

portation routes, similarity of newspaper articles, paths of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

disease outbreaks, or citation relationships among published

scientific work—have been processed for decades. Frequently

applied algorithms include shortest paths computations, dif-

ferent flavors of clustering, and variations on the page rank

theme. There are many other graph computing problems

of practical value, e.g., minimum cut and connected compo-

nents.

Efficient processing of large graphs is challenging. Graph

algorithms often exhibit poor locality of memory access, very

little work per vertex, and a changing degree of parallelism

over the course of execution [31, 39]. Distribution over many

machines exacerbates the locality issue, and increases the

probability that a machine will fail during computation. De-

spite the ubiquity of large graphs and their commercial im-

portance, we know of no scalable general-purpose system

for implementing arbitrary graph algorithms over arbitrary

graph representations in a large-scale distributed environ-

ment.

Implementing an algorithm to process a large graph typ-

ically means choosing among the following options:

1. Crafting a custom distributed infrastructure, typically

requiring a substantial implementation effort that must

be repeated for each new algorithm or graph represen-

tation.

2. Relying on an existing distributed computing platform,

often ill-suited for graph processing. MapReduce [14],

for example, is a very good fit for a wide array of large-

scale computing problems. It is sometimes used to

mine large graphs [11, 30], but this can lead to sub-

optimal performance and usability issues. The basic

models for processing data have been extended to fa-

cilitate aggregation [41] and SQL-like queries [40, 47],

but these extensions are usually not ideal for graph al-

gorithms that often better fit a message passing model.

3. Using a single-computer graph algorithm library, such

as BGL [43], LEDA [35], NetworkX [25], JDSL [20],

Stanford GraphBase [29], or FGL [16], limiting the

scale of problems that can be addressed.

4. Using an existing parallel graph system. The Parallel

BGL [22] and CGMgraph [8] libraries address parallel

graph algorithms, but do not address fault tolerance

or other issues that are important for very large scale

distributed systems.

None of these alternatives fit our purposes. To address dis-

tributed processing of large scale graphs, we built a scalable

135

Pregel

• Graph Computation
framework

• Developed by Google
• Per vertex function
update() processes
incoming messages and
sends new ones

• Computation is Bulk
Synchronous Parallel

Monday, April 16, 2012

Giraph

• Apache Open Source
implementation of Pregel

• Runs on Hadoop, (ab)uses
mappers to do so

• Used at LinkedIn and
Facebook

http://incubator.apache.org/giraph/

Monday, April 16, 2012

http://incubator.apache.org/giraph/
http://incubator.apache.org/giraph/

t=0

Pregel Visually

Monday, April 16, 2012

t=0

Pregel Visually
Messages
Arrive and

Are
Processed

Monday, April 16, 2012

t=0

Pregel Visually
Messages
Arrive and

Are
Processed

Monday, April 16, 2012

t=1t=0

Pregel Visually

Barrier

Monday, April 16, 2012

t=1t=0

Pregel Visually

Monday, April 16, 2012

t=1t=0

Pregel Visually
Messages
are being

sent

Monday, April 16, 2012

t=1t=0

Pregel Visually

Monday, April 16, 2012

t=1t=0 t=2

Pregel Visually

Monday, April 16, 2012

t=1t=0 t=2

Pregel Visually

Termination:
No more
messages

Monday, April 16, 2012

t=1t=0 t=2

Pregel Visually

Monday, April 16, 2012

Pregel: PageRank

• update() receives the PageRank of all
neighbors

• Updates its local PageRank
• Sends new PageRank around if it changed

enough

Monday, April 16, 2012

Pregel: Conclusion
• The Good

• Excellent Map for Graph problems
• Fast

• The Bad
• Memory Model
• Main Memory Assumption

• The Ugly
• Wrong computational model (stay for the

afternoon)
Monday, April 16, 2012

Open Problems
• No complete isolation of user / systems code

• Unlike MapReduce

• No one system for example formation and
modeling
• Learning Effort
• Orchestration
• Wasted resources in distributed clusters

Monday, April 16, 2012

A Declarative Approach

Monday, April 16, 2012

Joint Work With

Yingyi Bu, Vinayak Borkar, Michael J. Carey
University of California, Irvine

Joshua Rosen, Neoklis Polyzotis
University of California, Santa Cruz

Joshua Rosen, Neoklis Polyzotis
University of California, Santa Cruz

Monday, April 16, 2012

Goals
• Unify Example Formation and Modeling

• Relational Algebra Operators
• Iteration Support
• A unified runtime

• Increase Productivity via high-level language
• Insulate the user from the systems aspects
• Debugging and IDE support

Monday, April 16, 2012

Approach

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Unified Runtime
Scalability + High performance

Hyracks
Dataflow

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Unified Runtime
Scalability + High performance

Hyracks
Dataflow

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Unified Runtime
Scalability + High performance

Hyracks
Dataflow

Monday, April 16, 2012

ScalOps
• Internal Domain Specific Language (DSL)

• Written in Scala
• Relational Algebra (Filter, Join, GroupBy, …)
• Iteration support
• Rich UDF support

• Inline Scala function calls / literals
• Byte-code compatible with Java

• Support in major IDEs

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Table is our
Dataset type

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

class Example(x:Vector, y:Double)

Table is our
Dataset type

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Gradient
Function

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Gradient
Function

Loss
Function

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Compute
gradient

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Compute
gradient Sum it up

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Compute
gradient Sum it up

Update the
model

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Compute loss

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Compute loss Sum it up

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Compute loss Sum it up

Update
convergence

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Shared
Loop State

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Initializer

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Initializer Loop Condition

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Initializer Loop Condition

Loop Body

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Unified Runtime
Scalability + High performance

Hyracks
Dataflow

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Unified Runtime
Scalability + High performance

Hyracks
Dataflow

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

Automatic Optimizations
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

Automatic Optimizations
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Merge into one
MapReduce

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Monday, April 16, 2012

BGD in ScalOps
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }
}

Merge into one
Operator

Monday, April 16, 2012

Logical Plan

MapReduce

Map() Reduce()

Sequential

Update()
Aggregate

Statistics

(Model, Performance)Model
Loop

Continue()

Training
Data

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Unified Runtime
Scalability + High performance

Hyracks
Dataflow

Monday, April 16, 2012

Approach
ScalOps

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Datalog

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Recursive
Dataflow

Unified Runtime
Scalability + High performance

Hyracks
Dataflow

Monday, April 16, 2012

Some Optimizations
• Caching, Rocking

• Scheduling: Data-Local, Iteration-Aware

• Avoid (de-)serialization
• Minimize #network connections

• Pipelining

Monday, April 16, 2012

Physical Plan
Data Loading

HDFS

Iterative Computation

Sequential
(update)

HDFS

HDFS

Iteration Barrier

Driver
(loop)

model

model

Cached Records

CR

CR
(map)

CR
CR

CR

(map)
(map)

(map)
Aggregation tree

(reduce)

Monday, April 16, 2012

Physical Plan
Data Loading

HDFS

Iterative Computation

Sequential
(update)

HDFS

HDFS

Iteration Barrier

Driver
(loop)

model

model

Cached Records

CR

CR
(map)

CR
CR

CR

(map)
(map)

(map)
Aggregation tree

(reduce)

How
Many?

Monday, April 16, 2012

Physical Plan
Data Loading

HDFS

Iterative Computation

Sequential
(update)

HDFS

HDFS

Iteration Barrier

Driver
(loop)

model

model

Cached Records

CR

CR
(map)

CR
CR

CR

(map)
(map)

(map)
Aggregation tree

(reduce)

How
Many?

Structure?

Monday, April 16, 2012

Fan-In

+

…

+

…

…

+

…

… …

Fan-In

Monday, April 16, 2012

Fan-In

+

+

++ +

+ +

Monday, April 16, 2012

Fan-In: Blocking

+

+

++ +

+ +

Monday, April 16, 2012

Fan-In: Blocking

+

+

++ +

+ +

h = logf (N) = ln(N)
ln(f)

Monday, April 16, 2012

+

+

++ +

+ +

Fan-In: Time per Level
h = logf (N) = ln(N)

ln(f)

Monday, April 16, 2012

+

+

++ +

+ +

Fan-In: Time per Level
h = logf (N) = ln(N)

ln(f)t = fA

Monday, April 16, 2012

+

+

++ +

+ +

Fan-In: Total Time
h = logf (N) = ln(N)

ln(f)t = fA

Monday, April 16, 2012

+

+

++ +

+ +t = h ∗ t

=
f

ln(f)
ln(N) ∗A

Fan-In: Total Time
h = logf (N) = ln(N)

ln(f)t = fA

Monday, April 16, 2012

+

+

++ +

+ +t = h ∗ t

=
f

ln(f)
ln(N) ∗A

Fan-In: Total Time
h = logf (N) = ln(N)

ln(f)t = fA

Minimized
for

f̂ = e

Monday, April 16, 2012

Partitioning

• Aggregation time increases logarithmically with
number of machines

• Map time decreases linearly with the number
of machines

• Closed form solutions available (but omitted
here)

Monday, April 16, 2012

Evaluation

• As fast as
• Vowpal Wabbit
• Spark

• Faster than Hadoop (doh!)

• Much, much less code

Monday, April 16, 2012

Evaluation

50

100

150

It
er
at
io
n
ti
m
e
(s
ec
on

d
s)

20 24 40 60 80 120
CPUs

3,000

4,000

5,000

6,000

It
er
at
io
n
C
os
t
(C

P
U
-s
ec
on

d
s)

Monday, April 16, 2012

Evaluation

50

100

150

It
er
at
io
n
ti
m
e
(s
ec
on

d
s)

20 24 40 60 80 120
CPUs

3,000

4,000

5,000

6,000

It
er
at
io
n
C
os
t
(C

P
U
-s
ec
on

d
s)

Optimizer:
Cheapest

Monday, April 16, 2012

Evaluation

50

100

150

It
er
at
io
n
ti
m
e
(s
ec
on

d
s)

20 24 40 60 80 120
CPUs

3,000

4,000

5,000

6,000

It
er
at
io
n
C
os
t
(C

P
U
-s
ec
on

d
s)

Optimizer:
Cheapest

Optimizer:
Fastest

Monday, April 16, 2012

Summary

• Example Formation
• Use Pig

• Modeling
• Hadoop (maybe not)
• Subsampling (now)
• Spark / Pregel (now)
• ScalOps (as soon as we are done)

Monday, April 16, 2012

