Templates

for scalable data analysis

2 Synchronous Templates

Amr Ahmed, Alexander J Smola, Markus Weimer
Yahoo! Research & UC Berkeley & ANU

Running Example

Running Example

il 16, 2012

Running Example

il 16, 2012

Running Example

il 16, 2012

Running Example

il 16, 2012

Running Example

il 16, 2012

Running Example

il 16, 2012

Running Example

il 16, 2012

Running Example

il 16, 2012

Running Example

Webmail
Ul

Running Example

Webmail
Ul

ML Workflow

Raw Data @ Example @ Model

ML Workflow

Raw Data @ Example @ Model

ML Workflow

Example Training
Formation

Raw Data @ Example @ Model

Monday, April 16, 2012

ML Workflow

Raw Data @ Example @ Model

Example
Formation

Monday, April 16, 2012

ML Workflow

Example Prediction
Formation

Raw Data @ Example @ Model

Monday, April 16, 2012

ML Workflow

Example Prediction
Formation

Raw Data @ Example @ Model

Monday, April 16, 2012

ML Workflow

Example Prediction

Formation ‘

Raw Data @ Example @ Model

ML Workflow

Example Prediction
Formation

Raw Data @ Example @ Model

Monday, April 16, 2012

ML Workflow

Example Prediction
Formation

Raw Data @ Example @ Model

Monday, April 16, 2012

Monday, April 16, 2012

Monday, April 16, 2012

Example Formation

Example Formation

: Bag of

Example Formation

: Bag of

Example Formation

: Bag of

Example Formation

: Bag of

Example.

Example Formation
s

Example.

Example Formation

o Baein

Requirements

Data
Parallel
Functions

Requirements

Bag of
Words

Bag of
Words

Monday, April 16, 2012

Apache Pig

* Relational Query Language
e Similar to SQL

* Performs runtime
optimizations

* Executes Queries on
Apache Hadoop

* Developed and heavily used
by Yahoo!

e Open Source (Apache)

http://pig.apache.org

Monday, April 16, 2012

http://pig.apache.org
http://pig.apache.org

Pig: Example Formation

* Feature and Label Extraction

e User Defined Function
e Applied via FOREACH .. GENERATE

* Example formation
* JOIN between the outputs of the above

MapReduce

* Parallel, Distributed programming framework

e User defines two functions:
* map(x) emits (key, value) pairs

 reduce(k, x[]) gets all values for a key,
produces output

MapReduce

MapReduce

®o—09

Map

MapReduce

>
- QD
1O

Map GroupBy Reduce
(Shuffle)

MapReduce

>
- QD
1O

Map GroupBy Reduce
(Shuffle)

MapReduce

>
- QD
1O

Map GroupBy Reduce
(Shuffle)

MapReduce

GroupBy Reduce
(Shuffle)

MapReduce

. O

GroupBy Reduce
(Shuffle)

MapReduce

. O

GroupBy Reduce
(Shuffle)

MapReduce

. O

GroupBy Reduce
(Shuffle)

MapReduce

. O

GroupBy Reduce
(Shuffle)

MapReduce

. O

GroupBy Reduce
(Shuffle)

* Open Source MapReduce Implementation:
e HDFS: Distributed FileSystem

 YARN: Resource Management
* MapReduce: Programming Framework

http://hadoop.apache.orqg

Monday, April 16, 2012

http://pig.apache.org
http://pig.apache.org

 EGEED

* Open Source MapReduce Imple
e HDFS: Distributed FileSystem

 YARN: Resource Management

* MapReduce: Programming Framework

http://hadoop.apache.org

http://pig.apache.org
http://pig.apache.org

MapReduce tor ML

* Learning algorithm can
access the learning problem
only through a statistical
query oracle

* The statistical query oracle
returns an estimate of the
expectation of a function
f(x,y) (averaged over the
data distribution).

Efficient Noise-Tolerant Learning from Statistical

Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classificatio]
probabilistic learning model of Valiant and its variants. In order to identify the clasg
learning algorithms in the most general way, we formalize a new but related model of 1
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examii
examples of the unknown target function, but is given access to an oracle providing
probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical que|
learnable with classification noise in Valiant’s model, with a noise rate approaching the
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query mg
that practically every class learnable in Valiant’s model and its variants can also be learng
model (and thus can be learned in the presence of noise). A notable exception to this sta
class of parity functions, which we prove is not learnable from statistical queries, and
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and St
[Artificial Intelligence]; 1.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Val
in which the positive or negative classification label provided with eaq
example may be corrupted by random noise. This extension was first ex
the learning theory literature by Angluin and Laird [1988], who form
simplest type of white label noise and then sought algorithms tole

highest possible rate of noise. In addition to being the subject of a 1
theoretical stindies [Anolnin and T aird 1988 T aird 198K Slnan 198K-

Monday, April 16, 2012

MapReduce tor ML

Map-Reduce for Machine Learning on Multicore

* Rephrase oracle in

° Cheng-Tao Chu * Sang Kyun Kim * Yi-An Lin *
s U m m a I 0 n o r m ° chengtao@stanford.edu skkim38@stanford.edu ianl@stanford.edu
YuanYuan Yu * Gary Bradski Andrew Y. Ng *

yuanyuan@stanford.edu garybradski@gmail ang@cs.stanford.edu

Kunle Olukotun *
kunle@cs.stanford.edu

* Map: Calculate function T S
estimates over sub-groups of

d a t a We are at the beginning of the multicore era. Computers will have increasingly
° many cores (processors), but there is still no good programming framework for

these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to

@ Red u ‘e ® A re a te t h e demonstrate this parallel speed up technique on a variety of learning algorithms
® g g g including locally weighted linear regression (LWLR), k-means, logistic regres-

sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically

function estimates from O BN srion () G i
vda I'i OuUS SU b'g rou ps . 1 Introduction

Abstract

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling

L . L to lact 1 10 and 20 for silicon | | ciremits [10]

Monday, April 16, 2012

Example: Gradient

Example: Gradient

Example: Gradient

T~

»)

/

Example: Gradient

T~

»)

/

Example: Gradient

* Machine Learning Library

* Implementations of many algorithms, both on
Hadoop MapReduce and stand-alone

* Open Source (Apache)
* Welcoming, helpful community

http://mahout.apache.orqg

Monday, April 16, 2012

* Recommender Systems, e.g.

e User and ltem based recommenders

* Collaborative Filtering

* Clustering (K-Means, Mean Shift, ...)
* Topic Models (LDA)
e Supervised ML

* (Logistic) Regression

e Linear SYMs

e Decision Trees and Forests

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical

Queries
MICHAEL KEARNS Map-Reduce for Machine Learning on Multicore
AT&T Laboratories—Research, Florham Park, New Jersey ChengTao Chu * Sang Kyun Kim * Yi-An Lin*

du skkim: du ianl .edu

YuanYuan Yu * 'y Bradski Andrew Y. Ng *
yuanyuan@stanford.edu garybr adskifgmail anglcs.stanford.edu

Abstract. In this paper, we study the problem of learning in the presence of olassification noise in the

kunle@cs.stanford.edu

probabilistic learning model of Valiant and its variants. In order ta.identify.the. glagg of “robust”
learning algorithms in the most general way, we formalize a new but reladted model 'of Téarning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examme 1nd1v1dual
examples of the unknown target function, but is given access PIoVi
probabilities over the sample space of random examples.
One of our main results shows that any class of functions learq

learnable w1th classification noise in Valiant’s model, with a n01s

that practically every class learnable in Valiant’s model and its v 1
model (and thus can be learned in the presence of noise). A notﬁm mg’pmmn FE) 1“1;,15? atement
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; 1.2.
[Artificial Intelligence]; 1.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valia
in which the positive or negative=classificatio
example may be corrupted by random noise. T
the learning theory literature by Angluin and
sifigskish Qy[wodﬂlindﬁmMabeﬁ and then
highest pbsslbd® rate of nois® ddition to
theorefdealsstwdies LAngluin andLaird 1988;
Li 1993 the classification noise model has
expem&ﬁ&a Slachine learnu“arch.

Documents

< Share 117140 L videos

WA/

Tutorial @ KDD 2011
hitp://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Efficient Noise-Tolerant Learning from Statistical

Queries
MICHAEL KEARNS Map-Reduce for Machine Learning on Multicore
AT&T Laboratories—Research, Florham Park, New Jersey ChengTao Chu * Sang Kyun Kim * Yi-An Lin*

du skkim: du ianl .edu

YuanYuan Yu * 'y Bradski Andrew Y. Ng *
yuanyuan@stanford.edu garybr adskifgmail anglcs.stanford.edu

Abstract. In this paper, we study the problem of learning in the presence of olassification noise in the

kunle@cs.stanford.edu

probabilistic learning model of Valiant and its variants. In order ta.identify.the. glagg of “robust”
learning algorithms in the most general way, we formalize a new but reladted model 'of Téarning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examme 1nd1v1dual
examples of the unknown target function, but is given access PIoVi
probabilities over the sample space of random examples.
One of our main results shows that any class of functions learq

learnable w1th classification noise in Valiant’s model, with a n01s

that practically every class learnable in Valiant’s model and its v 1
model (and thus can be learned in the presence of noise). A notﬁm mg’pmmn FE) 1“1;,15? atement
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics]; 1.2.
[Artificial Intelligence]; 1.5 [Pattern Recognition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valia
in which the positive or negative=classificatio
example may be corrupted by random noise. T
the learning theory literature by Angluin and
sifigskish Qy[wodﬂlindﬁmMabeﬁ and then
highest pbsslbd® rate of nois® ddition to
theorefdealsstwdies LAngluin andLaird 1988;
Li 1993 the classification noise model has
expem&ﬁ&a Slachine learnu“arch.

Documents

< Share 117140 L videos

WA/

Tutorial @ KDD 2011
hitp://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Map-Reduce for Machine Learning on Multicore

Efficient Noise-Tolerant Learning from Statistical
Queries

ng-Tao Chu * Sang Kyun Kim * Yi-An Lin *
skkim38@stanford.edu ianl@stanford.edu

Gary Bradski * Andrew Y. Ng *
arybradski@gmail ang@cs.stanford.edu

Kunle Olukotun *
kunle@cs.stanford.edu

ment Stanford University 353 Serra Mall,
Qrd Hmversuy, Stanford CA 94305-9025.
e — f Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and u machine learning to
take advantage of the potential speed up. In t|
plicable parallel programming method, one tha
learning algorithms. Our work is in distinct g
learning of designing (often-ingenious) ways
time. Specifically, we show that algorithms thal
can be written in a certain “summation form,’
Ses g&ﬂgeﬂng aﬁ{g com We adapt Gg
? parallel s technique
mCh;ﬂg ng z’cally welghted% regression
’é'R‘ii‘fh(’LR)"a?f’afi%eBayes (NB), SVM, ICA, P(

ﬁa@rgl backprop ion (NN). Our ¢
Pnhmmn@p with an inc number of p

Documents

« Share

1 ()" 117140 L videos

Tutorial @ KDD 2011
hitp://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Map-Reduce for Machine Learning on Multicore

Efficient Noise-Tolerant Learning from Statistical
Queries

ng-Tao Chu * Sang Kyun Kim * Yi-An Lin *
skkim38@stanford.edu ianl@stanford.edu

Gary Bradski * Andrew Y. Ng *
arybradski@gmail ang@cs.stanford.edu

Kunle Olukotun *
kunle@cs.stanford.edu

ment Stanford University 353 Serra Mall,
Qrd Hmversuy, Stanford CA 94305-9025.
e — f Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and u machine learning to
take advantage of the potential speed up. In t|
plicable parallel programming method, one tha
learning algorithms. Our work is in distinct g
learning of designing (often-ingenious) ways
time. Specifically, we show that algorithms thal
can be written in a certain “summation form,’
Ses g&ﬂgeﬂng aﬁ{g com We adapt Gg
? parallel s technique
mCh;ﬂg ng z’cally welghted% regression
’é'R‘ii‘fh(’LR)"a?f’afi%eBayes (NB), SVM, ICA, P(

ﬁa@rgl backprop ion (NN). Our ¢
Pnhmmn@p with an inc number of p

Documents

« Share

1 ()" 117140 L videos

Tutorial @ KDD 2011
hitp://www.slideshare.net/hadoop

Monday, April 16, 2012

Further Reading

Session 2: Modeling with
Hadoop

Algorithms in MapReduce

Vijay K Narayanan

Principal Scientist, Yahoo! Labs, Yahoo!

| «, Share i« @@ L

Tutorial @
hitp://www.slidesh

Monday, April 16, 2012

Further Reading

Session 2: Modeling with
Hadoop

Algorithms in MapReduce

Vijay K Narayanan

Principal Scientist, Yahoo! Labs, Yahoo!

| «, Share i« @@ L

Tutorial @
hitp://www.slidesh

Monday, April 16, 2012

Further Reading

Further Reading

Further Reading

Efficient Noise-Tolerant Learning from Statistical
Queries

Map-Reduce for Machine Learning on Multicore

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Cheng-Tao Chu * Sang Kyun Kim * Yi-An Lin *
du skkim: du ianl

.edu
probabilistic earning model of Valian and s variants. In order 1o identiy the elass o robust YuanYuan Yu * Gary Bradski 1 Andrew Y. Ng
learning algorithms in the most general way, we formalize a new but related model of learning from yuanyuan@stanford.edu garybradskifgmail ang@cs.stanford.edu
probabities ove the smple spce of andom cxamples

Learmabe with clasi

Kunle Olukotun *

' that any class of functions learnabl from statstical queics i n fct kunle€cs.stanford. edu

ion noise in Valiant's model, with a noise rate approaching the information.
theoretic barrier of 1/2. We then demonstrate the generality of the statistica

query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the preser

£CS. Department, Stanford University 353 Se
Stanford University, Stanford CA'94305-9025.

 of noise). A notable exception to this statement i the I Rexce Inc.

class of parity functions, which we prove is not learnable from statistical queries, and for which no

noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of Computation]; G.3 [Probability and Statistics}: 12

[Artificial Intelligence]; L5 [Pattern Recognition] Abstract

General Terms: Computationsl learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning We are at the beginning of the multicore era. Computers will have increasingly

many cores (processors), but there is still no good programming framework for

tectures, and thus no simple and unified way for machine learning to
ntage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method. one that i easily applied to many different
learning algorithms. Our work is in distinet contrast to the tradition in machine

take advan
L. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random

learning of designing (often ingenious) ways 1o speed up a single algorithm at a
e ime. ecifically, we show that algorithms that fit the Statistical ery model [15;
example may be corrupted by random noise. This extension was first examined in time. Specifically, we show that algorithms that it the Statistical Query model [15]
Y Y can be written i certain “summation form,” which allows them to be casily par-

the learning theory literature by Angluin and Laird [1988], who formalized the

allelized on multicore computers. W
simplest type of white label noise and then sought algorithms tolerating the
h

adapt Google

demonstrate this parallel speed up technique on a g algorithms
est possible rate of noise. In addition to being the subject of a number of including locally weighted linear regression (LWLR), k-means, logistic regres-
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
Li 193], the classification noise model has become a common paradigm for (GDA). EM, and backpropagation (NN). Our experimental results show basically
experimental machine learning research linear speedup with an increasing number of processors.
Presentations 4

Session 2: Modeling with
Hadoop

——
Algorithms in MapReduce | aa

Vijay K Narayanan

Principal Scientist, Yahoo! Labs, Yahoo!

Documents 0

& sharo 1 ())™ 117140 L videos

Tutorial @ KDD 2011
hitp://www.slideshare.net/hadoop

Monday, April 16, 2012

Trouble

e ML is iterative

e Each iteration is a Job

e Overhead per job (>45s)

Scheduling
Program Distribution
Data Loading and Parsing

State Transfer

Map-Reduce for Machine Learning on Multicore

Yi-An Lin *
ianl@stanford.edu

Cheng-Tao Chu *
chengtao@stanford.edu

Sang Kyun Kim *
skkim38@stanford.edu

Gary Bradski *f
garybradski@gmail

YuanYuan Yu *
yuanyuan@stanford.edu

Andrew Y. Ng *
ang@cs.stanford.edu

Kunle Olukotun *
kunle@cs.stanford.edu

*CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

 Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling

|_every generation s nraiected to lagt hetween 10 and 20 mare vears for gilicon hased circnite 101 |

Monday, April 16, 2012

Trouble

e ML is iterative

e Each iteration is a Job

e Overhead per job (>45s)

Scheduling
Program Distribution
Data Loading and Parsing

State Transfer

Map-Reduce for Machine Learning on Multicore

Yi-An Lin *
ianl@stanford.edu

Cheng-Tao Chu *
chengtao@stanford.edu

Sang Kyun Kim *
skkim38@stanford.edu

Gary Bradski *f
garybradski@gmail

YuanYuan Yu *
yuanyuan@stanford.edu

Andrew Y. Ng *
ang@cs.stanford.edu

Kunle Olukotun *
kunle@cs.stanford.edu

*CS. Department, Stanford University 353 Serra Mall,
Stanford University, Stanford CA 94305-9025.

 Rexee Inc.

Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Our work is in distinct contrast to the tradition in machine
learning of designing (often ingenious) ways to speed up a single algorithm at a
time. Specifically, we show that algorithms that fit the Statistical Query model [15]
can be written in a certain “summation form,” which allows them to be easily par-
allelized on multicore computers. We adapt Google’s map-reduce [7] paradigm to
demonstrate this parallel speed up technique on a variety of learning algorithms
including locally weighted linear regression (LWLR), k-means, logistic regres-
sion (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis
(GDA), EM, and backpropagation (NN). Our experimental results show basically
linear speedup with an increasing number of processors.

1 Introduction

Frequency scaling on silicon—the ability to drive chips at ever higher clock rates—is beginning to
hit a power limit as device geometries shrink due to leakage, and simply because CMOS consumes
power every time it changes state [9, 10]. Yet Moore’s law [20], the density of circuits doubling

|_every generation s nraiected to lagt hetween 10 and 20 mare vears for gilicon hased circnite 101 |

Monday, April 16, 2012

Monday, April 16, 2012

* Local (subsampling)

* MPI
e Spark
* Pregel

Subsampling

* Form examples on the cluster

e Subsample the data on the cluster

e Train a model on a single machine <,

—

Java

Monday, April 16, 2012

Model Averaging

Per-Partition Training Averaging

Model Averaging
ad

=
=
=

Per-Partition Training Averaging

Model Averaging

=
=
=
=

Per-Partition Training Averaging

Model Averaging

Model Averaging

Per-Partition Training Averaging

Message Passing Interface

e Mature HPC standard

e Supported on many clusters (e.g. OpenMPI)

* Available in C, Fortran and Scripting
Languages

* Key operation here: AllReduce

AllReduce

AllReduce

... AlIReduce()

... AllReduce() I

AllReduce

... AlIReduce()

... AllReduce()

AllReduce

... AlIReduce()

... AllReduce()

AllReduce

... AllReduce() ... AllReduce()

... AllReduce() @ ... AllReduce()

... AllReduce() ... AllReduce()

AllReduce

... AllReduce() ... AllReduce()

... AllReduce() ... AllReduce()

... AllReduce() ... AllReduce()

AllReduce

... AllReduce() ... AllReduce()

Synchronization
Barrier

... AllReduce() ... AllReduce()

... AllReduce() ... AllReduce()

AllReduce

... AllReduce() ... AllReduce()

... AllReduce() ... AllReduce()

... AllReduce() ... AllReduce()

AllReduce

... AllReduce() ... AllReduce()

State Persists Across lterations

... AllReduce() ... AllReduce()

Hadoop AllReduce

* Use Hadoop for
* Data local scheduling
* Good machine

identification

e Use MPI for

e AllReduce

e 30x Speedup over
Hadoop MapReduce

A Reliable Effective Terascale Linear Learning System

Alekh Agarwal
Department of EECS
UC Berkeley

alekh@cs.berkeley.edu

Miroslav Dudik
Yahoo! Research
New York, NY
mdudik@yahoo-inc.com

ABSTRACT

We present a system and a set of techniques for learning
linear predictors with convex losses on terascale datasets,
with trillions of features,' billions of training examples and
millions of parameters in an hour using a cluster of 1000
machines. Individually none of the component techniques
is new, but the careful synthesis required to obtain an effi-
cient implementation is a novel contribution. The result is,
up to our knowledge, the most scalable and efficient linear
learning system reported in the literature. We describe and
thoroughly evaluate the components of the system, showing
the importance of the various design choices.

1. INTRODUCTION

Distributed machine learning is a research area that has
seen a growing body of literature in recent years. Much work
focuses on problems of the form

n
min Zé(wai; ¥i) + AR(w), (1)
weRd P

where x; is the feature vector of the i-th example, y; is the
label, w is the linear predictor, £ is a loss function and R a
regularizer. Much of this work exploits the natural decom-
posability over examples in (1), partitioning the examples
over different nodes in a distributed environment such as a
cluster.

Perhaps the simplest learning strategy when the number
of samples n is very large is to subsample a smaller set of
examples that can be tractably learned with. However, this
strategy only works if the problem is simple enough or the
number of parameters is very small. The setting of interest
here is when a large number of samples is really needed to
learn a good model, and distributed algorithms are a natural
choice for such scenarios.

'The number of

Olivier Chapelle
Yahoo! Research
Santa Clara, CA

chap@yahoo-inc.com

John Langford
Yahoo! Research
. __New York, NY
jl@yahoo-inc.com

Some prior works (McDonald et al., 2010; Zinkevich ¢
2010) consider online learning with averaging and I
et al. (2010a) propose gossip-style message passing
rithms extending the existing literature on distributed
vex optimization (Bertsekas and Tsitsiklis, 1989). Lan
et al. (2009) analyze a delayed version of distributed ¢
learning. Dekel et al. (2010) consider mini-batch versic
online algorithms which are extended to delay-based up:
in Agarwal and Duchi (2011). A recent article of Boyd
(2011) describes an application of the ADMM techniqu
distributed learning problems. GraphLab (Low et al., ¢
is a parallel computation framework on graphs. More cl
related to our work is that of Teo et al. (2007) who use]
to parallelize a bundle method for optimization.

However, all of the aforementioned approaches see
leave something to be desired empirically when deploy«
large clusters. In particular their throughput—measur
the input size divided by the wall clock running tim
smaller than the the I/O interface of a single machin
almost all parallel learning algorithms (Bekkerman e
2011, Part III, page 8). The I/O interface is an upper b
on the speed of the fastest sequential algorithm sinc
sequential algorithms are limited by the network inte
in acquiring data. In contrast, we were able to achi
throughput of 500M features/s, which is about a facto
faster than the 1Gb/s network interface of any one no

An additional benefit of our system is its compati
with MapReduce clusters such as Hadoop (unlike MPI-t
systems) and minimal additional programming effort tc
allelize existing learning algorithms (unlike MapReduc
proaches).

One of the key components in our system is a comr
cation infrastructure that efficiently accumulates and b
casts values across all nodes of a computation. It is func
ally similar to MPI AllReduce (hence we use the name)

LRV (NSRS [N Y o RN [SRR RICS B D I TTAdOOp Sc

> restar

zero entries in th http . / /hunCh . net/~vw ution s

Monday, April 16, 2012

http://pig.apache.org
http://pig.apache.org

MPI: Conclusion

* The Good

e Computational Performance

e Well established software available
e The Bad

* No fault tolerance
e The Ugly
* Ignorance of shared clusters
» Systems-Level decisions at the algorithm layer

Spark: Intro

* Open Source cluster computation framework
* Developed at UC Berkeley by the AMP Lab
* Aimed at interactive and iterative use cases
e 30x faster than Hadoop for those

e User interface: Embedded Domain Specific
Language in Scala

http://spark-project.orq/

http://spark-project.org/
http://spark-project.org/

Spark: Example

points = spark.textFile(...).
map(parsePoint).

partitionBy(HashPartitioner(NODES)).
cache()

w = Vector.random(D)

(1 <- 1 to ITERATIONS) {
gradient = points.map(computeGradient(_,w)).reduce(_ + _)

w -= gradient

¥

Monday, April 16, 2012

Spark: Example

cache()

Spark: Example

.urrtlitioner(NODES)).
cache()

Monday, April 16, 2012

Spark: Example

points = spark.textFile(...).
map(parsePoint).

partitionBy(HashPartitioner(NODES)).
cache()

w = Vector.random(D)

(1 <- 1 to ITERATIONS) {
gradient = points.map(computeGradient(_,w)).reduce(_ + _)

w -= gradient

¥

Monday, April 16, 2012

Spark: Example

points.map(computeGradient(_,w)).reduce(_ + _)

Monday, April 16, 2012

Spark: Example

map(parsePoint).
- AOIMPUIc
cachea()

L]

\dom(L)

points.map(computeGradient(_,w)).reduce(_ + _)

Monday, April 16, 2012

Spark: Example

points.map(computeGradient(_,w)).reduce(_ + _)

Monday, April 16, 2012

Spark: Example

points = spark.textFile(...).
map(parsePoint).

partitionBy(HashPartitioner(NODES)).
cache()

w = Vector.random(D)

(1 <- 1 to ITERATIONS) {
gradient = points.map(computeGradient(_,w)).reduce(_ + _)

w -= gradient

¥

Monday, April 16, 2012

Spark: Example

partitionBy(HashPartitioner(NODES))

Monday, April 16, 2012

Spark: Example

partitionBy(HashPartitioner(NODES))

v)).reduce(_ + _)

Monday, April 16, 2012

Spark: Conclusion

* The Good

* Speed (ca. MPI speed)

* Fault Tolerance

* Ease of Programming
* The Bad

* Main Memory Assumption
e The Ugly

e Systems aspects creep up

Pregel

* Graph Computation

framework

* Developed by Google

* Per vertex function
update () processes
Incoming messages an
sends new ones

e Computation is Bulk
Synchronous Parallel

Pregel: A System for Large-Scale Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, llan Horn,

Naty Leiser, and Grzegorz Czajkowski
Google, Inc.

{malewicz,austern,ajcbik,dehnert,ilan,naty,gczaj}@google.com

[RACT

practical computing problems concern large graphs.
rd examples include the Web graph and various so-
tworks. The scale of these graphs—in some cases bil-
f vertices, trillions of edges—poses challenges to their
t processing. In this paper we present a computa-
model suitable for this task. Programs are expressed
squence of iterations, in each of which a vertex can
- messages sent in the previous iteration, send mes-
o other vertices, and modify its own state and that of
going edges or mutate graph topology. This vertex-
approach is flexible enough to express a broad set of
hms. The model has been designed for efficient, scal-
1d fault-tolerant implementation on clusters of thou-
>f commodity computers, and its implied synchronic-
kes reasoning about programs easier. Distribution-
.details are hidden behind an abstract API. The result
mework for processing large graphs that is expressive
sy to program.

rories and Subject Descriptors

Programming Techniques|: Concurrent Program-
-Distributed programming; D.2.13 [Software Engi-
1g): Reusable Software— Reusable libraries

ral Terms
, Algorithms

rords
yuted computing, graph algorithms

NTRODUCTION

Internet made the Web graph a popular object of
is and research. Web 2.0 fueled interest in social net-
Other large graphs—for example induced by trans-
ion routes, similarity of newspaper articles, paths of

An tn mala Adiaital ar hard caniac af all ar nart Af thic warl far

disease outbreaks, or citation relationships among pub
scientific work—have been processed for decades. Frequ
applied algorithms include shortest paths computation
ferent flavors of clustering, and variations on the page
theme. There are many other graph computing pro
of practical value, e.g., minimum cut and connected cc
nents.

Efficient processing of large graphs is challenging. (
algorithms often exhibit poor locality of memory access
little work per vertex, and a changing degree of paral
over the course of execution [31, 39]. Distribution over
machines exacerbates the locality issue, and increase
probability that a machine will fail during computatior
spite the ubiquity of large graphs and their commerci:
portance, we know of no scalable general-purpose s:
for implementing arbitrary graph algorithms over arb
graph representations in a large-scale distributed en
ment.

Implementing an algorithm to process a large grapl
ically means choosing among the following options:

1. Crafting a custom distributed infrastructure, typ
requiring a substantial implementation effort that
be repeated for each new algorithm or graph rep
tation.

2. Relying on an existing distributed computing plat
often ill-suited for graph processing. MapReduce
for example, is a very good fit for a wide array of
scale computing problems. It is sometimes us
mine large graphs [11, 30], but this can lead tc
optimal performance and usability issues. The
models for processing data have been extended
cilitate aggregation [41] and SQL-like queries [4(
but these extensions are usually not ideal for gra
gorithms that often better fit a message passing n

3. Using a single-computer graph algorithm library
as BGL [43], LEDA [35], NetworkX [25], JDSL
Stanford GraphBase [29], or FGL [16], limitin
scale of problems that can be addressed.

4. Using an existing parallel graph system. The P
ROT 1991 and OO Maranh 1] Tihsasine addweace ne

Monday, April 16, 2012

Giraph

* Apache Open Source
implementation of Pregel

* Runs on Hadoop, (ab)uses
mappers to do so

e Used at Linkedln and
Facebook

http://incubator.apache.org/giraph/

Monday, April 16, 2012

http://incubator.apache.org/giraph/
http://incubator.apache.org/giraph/

Pregel Visually

Pregel Visually

Pregel Visually

O

Pregel Visually

> o
> o

Pregel Visually

o e
o o

isually
| Visua

N\ @

Pregel Visually

=1

Pregel Visually

Pregel Visually

Pregel Visually

Pregel: PageRank

e update() receives the PageRank of all
neighbors

* Updates its local PageRank

e Sends new PageRank around if it changed
enough

Pregel: Conclusion

* The Good
* Excellent Map for Graph problems

* Fast
* The Bad
* Memory Model
* Main Memory Assumption
e The Ugly
* Wrong computational model (stay for the
afternoon)

Open Problems

* No complete isolation of user / systems code
* Unlike MapReduce

* No one system for example formation and
modeling

* Learning Effort
e Orchestration
e Wasted resources in distributed clusters

Joint Work With

Yingyi Bu, Vinayak Borkar, Michael J. Carey Joshua Rosen, Neoklis Polyzotis
University of California, Irvine University of California, Santa Cruz

!

Joshua Rosen, Neoklis Polyzotis
University of California, Santa Cruz

Monday, April 16, 2012

 Unify Example Formation and Modeling

* Relational Algebra Operators
* |teration Support

e A unified runtime

* Increase Productivity via high-level language
* Insulate the user from the systems aspects

* Debugging and IDE support

Approach

Approach

High Level Language
Relational Algebra and Loops

Approach

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Approach

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Approach

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Unified Runtime
Scalability + High performance

Approach

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Unified Runtime
Scalability + High performance

Approach
High Level Language
Relational Algebra and Loops

ScalOps

* Internal Domain Specific Language (DSL)
e Written in Scala

* Relational Algebra (Filter, Join, GroupBy, ...)

* lteration support

e Rich UDF support
* |Inline Scala function calls / literals
e Byte-code compatible with Java

e Support in major IDEs

BGD in ScalOps

train(xy:Table[Example],
compute_grad: (Example, Vector) => Vector,

compute_loss:(Example, Vector) =>) = {
Env(w:VectorType, lastError:DoubleType, delta:DoubleType) Environment
initialValue = new Env(VectorType.zeros(1000), .MaxValue, .MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastlLoss = loss
env
¥
¥
ks

Monday, April 16, 2012

BGD in ScalOps

xy:Table[Example],

compute_grad: (Example, Vector) => Vector,

compute_loss:(Example, Vector) => Double) = {
class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment
val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient

env.delta = env.lastlLoss - loss

env.lastLoss = loss

env

Monday, April 16, 2012

BGD in ScalOps

xy:Table[Example],
computeNagad: (Example,
compute_lo alaTau -

Vector) => Vector,

class Env(w:VectorType Tlee 1S OUTr DoubleType) extends Environment

val initialValue = ne buble .MaxValue, Double.MaxValue)

Dataset type

loop(initialValue, (env. = : ’ env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env

¥
¥
ks

Monday, April 16, 2012

class Example(x:Vector, y:Double)

xy:Table[ExampTle],
computeNagad: (Example,
compute_lo alaTau -

Vector) => Vector,

class Env(w:VectorType Tlee 1S OUTr DoubleType) extends Environment

val initialValue = ne buble .MaxValue, Double.MaxValue)

Dataset type

loop(initialValue, (env. = : ’ env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env

¥
¥
ks

Monday, April 16, 2012

BGD in ScalOps

compute_grad: (Example, Vector) => Vector,
compute_loss:(Example, Vector) => Double) = {

class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment

val initialValue =

loop(initialValue,

val gradient
val loss
env.w
env.delta
env. lastLoss
env

new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

(env: Env) => env.delta < eps) { env => {

xy .map(x=>compute_grad(x,env.w)).reduce(_+_)
xy .map(x=>compute_loss(x,env.w)).reduce(_+_)
gradient

env.lastLoss - loss

loss

Monday, April 16, 2012

PSS BeinaScalOps

Gradient
Function

def train(xy:Table]
compute_grad: (Example, Vector) => Vector,
compute_loss:(Example, Vector) => Double) = {
class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment
val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
¥
Iy
ks

Monday, April 16, 2012

CDuineScalOps

Gradient
Function

def train(xy:Table]

compute_grad: (Example, Vector) => Vector,
compute_loss:(Example, Vector) => Double) = {

class Env(w:Vectd delta:DoubleType) extends Environment

val initialValue)@), Double.MaxValue, Double.MaxValue)
loop(initialValus)s) { env => {

val gradient .W)).reduce(_+_)

val loss = - .W)).reduce(_+_)

env.w -= gradient

env.delta = env.lastlLoss - loss

env.lastLoss = loss
env

Monday, April 16, 2012

BGD in ScalOps

gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastLoss - loss
env.lastLoss = loss
env
}
}
}

Monday, April 16, 2012

BGD in ScalOps

Compute
gradient

val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
¥
¥
¥

Monday, April 16, 2012

BGD in ScalOps

def train(xy:Table[Example],

) => Vect
) => Doub
Compute
. bleType, onment
gradient
.zeros(1 xValue)
loop(initialValue, (env: Env) =W§ env.delta < eps) { efv => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
Iy
Iy
ks

Monday, April 16, 2012

BGD in ScalOps

def train(xy:Table[Example],
) => Vect

) => Doub
Compute
. bleType, onment
gradient
.zeros(1 xValue)
loop(initialValue, (env: Env) =W§ env.delta < eps) { efv => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta =\env.lastlLoss - loss
env.lastLoss = WSS
env
Iy
. Update the

model

Monday, April 16, 2012

BGD in ScalOps

def train(xy:Table[Example],
compute_grad: (Example, Vector) => Vector,
compute_loss:(Example, Vector) => Double) = {
class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment
val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient

env.delta = env.lastlLoss - loss

env.lastlLoss = loss

env

Monday, April 16, 2012

BGD in ScalOps

def train(xy:Table[Example],
compute_grad: (Example, Vector) => Vector,

) => Double) = {
bleType, delta:DoubleType) extends Environment

.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env env.delta < eps) { env => {
val gradient = xy.map(x=>colpute_grad(x,env.w)).reduce(_+_)
val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastlLoss = loss
env

¥
¥
¥

Monday, April 16, 2012

BGD in ScalOps

def train(xy:Table[Example],

compute_grad:(Example, Vector) => Vector,
) => Doub

class H bleType, onment
val 1n zeros(1 xValue)
loop(initialValue, (env: Env env.delta < eps =>
val gradient = xy.map(x=>colpute_grad(x,env.w)).rqduce(_+_)
val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
ks
by
ks

Monday, April 16, 2012

BGD in ScalOps

def train(xy:Table[Example],
compute_grad:(Example, Vector) => Vector,

) => Doub
class H bleType, onment
val 1n zeros(1 xValue)
loop(initialValue, (env: Env env.delta < eps =>
val gradient = xy.map(x=>colpute_grad(x,env.w)).rqduce(_+_)
val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
¥
¥
ks

convergence

Monday, April 16, 2012

BGD in ScalOps

Env(w:VectorType, lastError:DoubleType, delta:DoubleType) Environment
initialValue = new Env(VectorType.zeros(1000), .MaxValue, .MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
¥
¥
ks

Monday, April 16, 2012

BGD in ScalOps

Shared
Loop State

class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment
val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
ks
ks
ks

Monday, April 16, 2012

BGD in ScalOps

Env(w:VectorType, lastError:DoubleType, delta:DoubleType) Environment
initialValue = new Env(VectorType.zeros(1000), .MaxValue, .MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
¥
¥
ks

Monday, April 16, 2012

BGD in ScalOps

Error:DoubleType, delta:DoubleType) extends Environment

nv(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xxy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
ks
ks
ks

Monday, April 16, 2012

BGD in ScalOps

Loop Condition

) extends Environment

nv(Vectorlype.zerog . , bouble.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
ks
ks
ks

Monday, April 16, 2012

BGD in ScalOps

) extends Environment

nv(Vectorlype.zerog , bouble.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

val loss = Xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss ;
env JULY DOU
ks
ks
ks

Monday, April 16, 2012

Approach

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Unified Runtime
Scalability + High performance

Approach

v Suite of data-parallel operators
Selected by an Optimizer / Compiler

BGD in ScalOps

train(xy:Table[Example],
compute_grad: (Example, Vector) => Vector,

compute_loss:(Example, Vector) =>) = {
Env(w:VectorType, lastError:DoubleType, delta:DoubleType) Environment
initialValue = new Env(VectorType.zeros(1000), .MaxValue, .MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastlLoss = loss
env
¥
¥
ks

Monday, April 16, 2012

Automatic Optimizations

gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
¥
¥
¥

Monday, April 16, 2012

Automatic Optimizations

Merge into one
MapReduce

val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
val loss xy .map(x=>compute_loss(x,env.w)).reduce(_+_)

gradaLer

env.delta

env.lastLoss - loss
env.lastLoss = loss
env
¥

Monday, April 16, 2012

BGD in ScalOps

env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastlLoss = loss
env
¥
¥
¥

Monday, April 16, 2012

BGD in ScalOps

Merge into one
Operator

env.w -= gradient
env.delta = env.lastLoss - loss

env.lastLoss = loss

Monday, April 16, 2012

Logical Plan

Y
N—

Data

—

i

Continue()
Loop

MOdel T —"

Training -

Map() Reduce()

——

MapReduce

Aggregate
#

Statistics

(Model, Performance)

Update()

Sequential
S —

Monday, April 16, 2012

Approach

High Level Language
Relational Algebra and Loops

Declarative Language
Captures the Recursive Dataflow

Suite of data-parallel operators
Selected by an Optimizer / Compiler

Unified Runtime
Scalability + High performance

Approach

: Unified Runtime
Scalability + High performance

Some Optimizations

* Caching, Rocking

e Scheduling: Data-Local, Iteration-Aware

* Avoid (de-)serialization

* Minimize #network connections

* Pipelining

Physical Plan

Data Loading

‘ HDFS I

Iterative Computation

@ ; model
T

Cached Records

R - P e Sequential
® W O ® .9 e S W
2008 HBH® HILP HIEP (update)
Aggregation tree
(reduce)
[teration Barrier
”‘ model HDFS
Driver
(loop)

Monday, April 16, 2012

Data Loading

‘ HDFS I

Iterative Computation

@ + model
T

Cached Records

.- ©
R - P e Sequential
® W O ® .9 e QL WO
2008 HBH® HILP HIEP (update)
Aggregation tree
(reduce)
[teration Barrier
”‘ model HDFS
Driver
(loop)

Monday, April 16, 2012

Data Loading

‘ HDFS I

Iterative Computation

Cached Records

@ + model

@ Aggregation tree
[teration Barrier

Sequential
(update)

(reduce)

| |‘ model

!

Driver
(loop)

HDFS

Monday, April 16, 2012

Monday, April 16, 2012

7 &

Fan-In: Blocking

/®\
DR
pRoNoNo

Fan-In: Blocking

In(N
h=log;(N) = 1R

/®\
DR
pRoNoNo

Fan-In: Time per Level

In(N
h=log;(N) = 1R

Fan-In: Time per Level

t=fA h=log;(N) = T

Fan-In: Total Time

In(N)

Fan-In: Total Time

In(N)
t= fA

~ In(f)

/ n(N)x* A
= Y

Fan-In: Total Time

Partitioning

* Aggregation time increases logarithmically with
number of machines

* Map time decreases linearly with the number
of machines

e Closed form solutions available (but omitted
here)

Monday, April 16, 2012

Evaluation

e As fast as
* Vowpal Wabbit
e Spark
 Faster than Hadoop (doh!)

* Much, much less code

Evaluation

[teration time (seconds)

150

100

O
-

20 24 40 60 &0 120
CPUs

6,000

U-seconds)

5,000 &

(C

4,000 %

3.000

[teration C

Monday, April 16, 2012

Evaluation

Optimizer: =

Q
Cheapest 6,000 &
N -
=z 5.000 &

O
QE_) N——
i= 4,000 3
- O
2 =
2 3,000 2
O av
= 50 f:j

20 24 40 60 &0 120
CPUs

Monday, April 16, 2012

Evaluation

Optimizer:

Che

[teration time (secc

~—

100

O
-

apest

20 24 40 60 &0 120
CPUs

Optimizer:

Fastest

5,000 &

=
-
-
-

3.000

[teration Cost (CPU

Monday, April 16, 2012

e Example Formation

* Use Pig
* Modeling
* Hadoop (maybe not)
e Subsampling (now)
e Spark / Pregel (now)
e ScalOps (as soon as we are done)

