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Example: Spam Filter

Inbox

Spam

User
Interface
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Machine Learning Workflow

e Step I: Example Formation
— Feature Extraction
— Label Extraction

e Step Il: Modeling
e Step lll: Deployment (or just Evaluation)

E I .
xampre » Modeling » Evaluation
Formation
4
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Example Formation

Feature Extraction

: Bag of Large Scale Join
o IS

a

Data Parallel

Functions

Label Extraction
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Modeling

 Many Algorithms are inherently sequential

— Apply model to data = Look at Errors > Update
Model

e Common solutions
— Subsampling
— Train on partitions, merge results
— Rephrasing of algorithms in MapReduce
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MapReduce for Modeling

* Learning algorithm
access the data only
through statistical
querys

e A statistical query
returns an estimate o
the expectation of a
function f(x,y) applied
to the data.
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Efficient Noise-Tolerant Learning from Statistical
Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the
probabilistic learning model of Valiant and its variants. In order to identify the class of “robust”
learning algorithms in the most general w; formalize a new but related model of learning from
statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual
examples of the unknown target function, but is given access to an oracle providing estimates of
probabilities over the sample space of random examples.

One of our main ass of functions learnable from statistical queries is in fact
learnable with cla: tion noise in Valiant's model, with a noise rate approaching the information-
theoretic barrier of 1/2. We then demonstrate the generality of the statistical query model, showing
that practically every class learnable in Valiant’s model and its variants can also be learned in the new
model (and thus can be learned in the presence of noise). A notable exception to this statement is the
class of parity functions, which we prove is not learnable from statistical queries, and for which no
noise-tolerant algorithm is known.

Categories and Subject Descriptors: F. [Theory of C ion]; G.3 [Pr ility and Statistics]; 1.2.
[Artificial ]; L5 [Pattern ition]

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant’s learning model [Valiant 1984]
in which the positive or negative classification label provided with each random
example may be corrupted by random noise. This extension was first examined in
the learning theory literature by Angluin and Laird [1988], who formalized the
simplest type of white label noise and then sought algorithms tolerating the
highest possible rate of noise. In addition to being the subject of a number of
theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and
Li 1993], the classification noise model has become a common paradigm for
experimental machine learning research.
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MapReduce for Modeling

 Rephrase query in
summation form.

* Map: Calculate function
estimates over data
partitions

* Reduce: Aggregate the
function estimates.
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Abstract

We are at the beginning of the multicore era. Computers will have increasingly
many cores (processors), but there is still no good programming framework for
these architectures, and thus no simple and unified way for machine learning to
take advantage of the potential speed up. In this paper, we develop a broadly ap-
plicable parallel programming method, one that is easily applied to many different
learning algorithms. Qur work is in distinct contrast to the tradition in machine




Example Methods

* Convex Optimization
— (Logistic) Regression

— Support Vector
machines

 K-Means Clustering
* Nalve Bayes
* Neural Networks

6/5/12

UJ, and F(y) tom hC Taimng data. In ordcr 10 do S0, we need [0 sum over ; = K Tor
cach y label in the training data to calculate P(z|y). We specify different sets of mappers
to caleulate the following: 37, .. ., Wi = kly = 1} 37 00000, Lz = Kly = 0}
Xsubyrml;) Wy =1}and 3° ;. .., H{y = 0}. The reducer then sums up intermediate
results to get the [nal result for the parameters.

Gaussian Discriminative Analysis (GDA) The classic GDA algorithm [13] needs to learn
the following four statistics P(y), pto, 1 and X. For all the summation forms involved in
these computations, we may leverage the map-reduce framework to parallelize the process.
Each mapper will handle the summation (i.e. X 1{y; = 1},X H{y, = 0L X Hy, =
0}z, ete) for a subgroup of the training samples. Finally, the reducer will aggregate the
intermediate sums and calculate the CUnal result for the parameters.

k-means In k-means [12], it is clear that the operation of computing the Euclidean distance
between the sample vectors and the centroids can be parallelized by splitting the data into
individual subgroups and clustering samples in cach subgroup separately (by the mapper).
In recalculating new centroid vectors, we divide the sample vectors into subgroups, com-
pute the sum of vectors in each subgroup in parallel, and Cnally the reducer will add up the
partial sums and compute the new centroids.

Logistic Regression (LR) For logistic regression [23], we choose the form of hypothesis
as hg(x) = g(67z) = 1/(1 + exp(—67z)) Learning is done by Ctting# to the training
data where the likelihood function can be optimized by using Newton-Raphson to update
0 1= 0 — H™'Vqf(8). Vgé(0) is the gradient, which can be computed in parallel by
mappers summing up }:S,,.J,,,.,,.;_,,(y':’:’ — hg (z':’:’))rﬁ,“' cach NR step 7. The computation
of the hessian matrix can be also written in a summation form of H(j, k) := H(j, k) +
ho(z)(ha(2V) — 1)z}’ 'z} for the mappers. The reducer will then sum up the values
for gradient and hessian to perform the update for 6.

Neural Network (NN) We focus on backpropagation [6] By de“ning a network struc-
ture (we use a three layer network with two output neurons classifying the data into two
categories), cach mapper propagates its set of data through the network. For each train-
ing example, the error is back propagated to calculate the partial gradient for each of the
weights in the network. The reducer then sums the partial gradient from each mapper and
does a batch gradient descent to update the weights of the network.

Principal Components Analysis (PCA) PCA [29] computes the principle eigenvectors of
the covariance matrix ¥ = = (307, xyx]’) — pp” over the data. In the delnition for
¥, the term (-7, z;z!) is already expressed in summation form. Further, we can also
express the mean vector y as a sum, g = ﬁ; 3" | ;. The sums can be mapped to separate
cores, and then the reducer will sum up the partial results to produce the Cnal empirical
covariance matrix.

Independent Component Analysis (ICA) ICA [1] tries to identify the independent source




Example: Batch Gradient Descent
(BGD)

Until Convergence:

w,, =(1.0-ni)* (Wt T "E(x,yﬁwl(y’w”x»)

Regularization Data Parallel Sum
w,: Current Model I: loss function (e.g. squared error)
x: Data 0: Gradient operator

y: Label



Example: Gradient Computation

Partition | Gradient |

Gradient

Partition Il M a p Gradient I Sum
—

Partition Il Gradient Ill
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Modeling on Hadoop MapReduce?

* Machine learning algorithms are iterative
— Each iteration contains multiple Statistical Queries

* Overhead per MapReduce Job
— Each statistical query is a job

— A job entails Scheduling, Data reading, State
transfer, ...

— Especially bad on shared clusters

6/5/12 12



More than Map Reduce

 Complete Job DAGs

— Beyond the fixed map-
groupby-reduce

— Arbitrary length and
complexity
* More Operators
— Join, Filter, Project, ...
 Examples
— Dryad (Microsoft Research)
— Hyracks (UC Irvine)
— Stratosphere (TU Berlin)
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More than Map Reduce

DAGs

Machine
Learning

IS
Cyclic!




Applied Large Scale ML requires ...

* A Relational Algebra

— Join, Filter, Map, ...

— For feature and label extraction
* [terative computation

— Loops over data

— Incremental model updates

Giraph
Sl (Pllrreagpel)
* Scalability / High Performance

— Jobs must execute successfully irrespective of

One-
Offs
the data set size / runtime cluster configuration

— More favorable cluster setups must be used for =
speed-ups (e.g. cache data in memory)
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Take-away

e Usability is bad
— Developing a single model takes months
— Requires many tools and technologies

* Pick your poison on a way to a subpar solution
— Subsampling hurts model fidelity
— Training on MapReduce often too slow

6/5/12 16



Goals

* Integrate modeling and ETL workflows
— All Pig operators
— Iteration is a first class citizen
— Unify MPI, Pregel, MapReduce, ... on a single runtime

* Improve productivity

— Free the Programmer from runtime details (like
MapReduce)

— Facilitate easier job composition
— |IDE support
— UDFs as first class citizens (unlike Pig)

6/5/12
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User
Program

‘.

Logical

Physical
Plan

Execution

Engine

.‘ .‘ §

Vision
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Program
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Engine
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Vision

Loop
Aware on
all Levels
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)
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ScalOps

h

h
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ScalOps — The Language

ScalOps

o~
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ScalOps — Overview

Embedded Domain Specific Language in Scala

All Pig Operators (Filter, Join, GroupBy, ...

Rich UDF support

— Inline Scala function calls / literals
— Everything callable from a JVM can be a UDF

Support in major IDEs

)



Example: Batch Gradient Descent
(BGD)

Until Convergence:

w,, =(1.0-ni)* (Wt T "E(x,yﬁwl(y’w”x»)

Regularization Data Parallel Sum
w,: Current Model I: loss function (e.g. squared error)
x: Data 0: Gradient operator

y: Label



BGD in ScalOg
Training data; Table is

def 1 oe
Initializer Loop Condition Loop Body

class E . extends Environment

val initi! ) 1e.MaxValue)

~ :
loop(initialvalue, (env: Env) => env.del omputes a gradient

val gradient = xy.map(x=>co
val loss = Xy.map(x=>comp
env.w -= gradient
env.delta = env.lastlLoss - 1loss
env.lastlLoss loss

env

Computes the loss

Native UDFs

6/5/12 23



Spark!?
e Scala DSL and runtime for data analytics

val points = spark.textFile(...).

map(parsePoint).
e e e partitionBy(HashPartitioner(NODES)) .
cache()

T R

o

VUL Yt viee e = cwesmnap(p =>
/7 Q@+ exp( p y*(w dot p.x3)) - 1) * p.y * p.x ).
reduce(_ + _)

w -= gradient

}

6/5/12
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Parse Tree Extraction Example
table.filter ( >7) .map (x=>x"2)

Filter

25



Automatic Optimizations

train(xy:Table[Example],
compute grad: (Example, Vector) => Vector,

compute loss:(Example, Vector) => ) = {
Env(w:VectorType, lastError:DoubleType, delta:DoubleType) Environment
initialValue = new Env(VectorType.zeros(1000), .MaxValue, .MaxValue)

loop(initialvalue, (env: Env) => env.delta < eps) { env => {

gradient = xy.map(x=>compute_grad(x,env.w)).reduce( +_)
loss = xy.map(x=>compute_loss(x,env.w)).reduce( + )
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env

6/5/12 26
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Automatic Optimizations

Merge into one
MapReduce
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Automatic Optimizations

train(xy:Table[Example],
compute grad: (Example, Vector) => Vector,

compute loss:(Example, Vector) => ) = {
Env(w:VectorType, lastError:DoubleType, delta:DoubleType) Environment
initialValue = new Env(VectorType.zeros(1000), .MaxValue, .MaxValue)

loop(initialvalue, (env: Env) => env.delta < eps) { env => {

gradient = xy.map(x=>compute_grad(x,env.w)).reduce( +_)
loss = xy.map(x=>compute_loss(x,env.w)).reduce( + )
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
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env.w
env.delta

Automatic Optimizations

Merge into one
Operator

-= gradient
env.lastLoss - loss

env.lastLoss loss

env

6/5/12
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Automatic Optimizations

train(xy:Table[Example],
compute grad: (Example, Vector) => Vector,

compute loss:(Example, Vector) => ) = {
Env(w:VectorType, lastError:DoubleType, delta:DoubleType) Environment
initialValue = new Env(VectorType.zeros(1000), .MaxValue, .MaxValue)

loop(initialvalue, (env: Env) => env.delta < eps) { env => {

gradient = xy.map(x=>compute_grad(x,env.w)).reduce( +_)
loss = xy.map(x=>compute_loss(x,env.w)).reduce( + )
env.w -= gradient
env.delta = env.lastlLoss - loss
env.lastLoss = loss
env
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Automatic Optimizations

def train(xy:Table[Example],

Loop( ) {
xy.map(x=>compute_grad(x,env.w)).reduce(_+_)

Xy gnap (x=>compute_loss(x,env.w)).reduce( + )

Cache xy in main

memory, if possible

6/5/12
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Result: Logical Plan

Continue()
I Loop

e —
Model (Model, Performance)

' |

<>
Aggregate
Training Map() Reduce() —l> Update()
Data Statistics
MapReduce Sequential
S —— -

32
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Physical Optimizer

Hyracks

-
Physical
Plan
lIIIiilIII\
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lterative Map-Reduce-Update

Data Loading

S —
HDFS

Iterative Computation

Cached Records

-
— > 1DFS 7 model _ l
g3 Sequential
S W © .. © © O
J8L8 $BES STLS $EP (update)

Aggregation tree

(reduce)

[teration Barrier l

I¢|< model I HDFS \

Driver
(loop)

6/5/12
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Other “Optimizations”

Caching, “Rocking”

Data-Local Scheduling
Iteration-Aware Scheduling
Avoid (de-)serialization
Minimize #network connections
Pipelining



Optimal Aggregation Tree Fan-In

6/5/12
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Tree Fan-In: Blocking

@ h = log (V) =
/ \

e

CO0O00CE



Tree Fan-In: Time per level

FA @ h = log;(N)
\
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Overall Aggregation Time
Minimization

Minimized

40



R

Optimal Partitioning: Time per Iteration

Aggregation
time

Processing
Time

= Aeln(N) +
Symbol
Time for not
£ [EEEEE loading from
Cache capacity per CPU Disk

M
P
D
A

6/5/12

Map time per record Load Time

Load time per record

Aggregation time per record

41



Optimal Choices (Summary)

e Minimal Wall Clock Time

— Balance aggregation & map time
— Almost always: Use as many machines as you can

* Minimal Cost (time x #machines)
— If your data fits into distributed RAM: do that
— Else: It's complicated

6/5/12 42



symbol

R

M
P
D
A

Time Optimal Partitioning

Let R < MN. The time-minimal number of machines for an Iterative Map-
Reduce-Update operator is

A RP
Ny = —
YT Ae
Let R > MN. The time-minimal number of machines for an Iterative Map-
Reduce-Update operator is e
. rD+RP ®

N =

Ae ‘

# Records Most often: Use as

Cache capacity per CPU many machines as

_ you have
Map time per record

Load time per record

Aggregation time per record
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symbol

R

M
P
D
A

Cost Optimal Partitioning

Let R < MN. The cost-minimal number of machines for an Iterative Map-
Reduce-Update operator is

A R
Ny = o
Let R > M N. The cost-minimal number of machines for an Iterative Map-
Reduce-Update operator is ¢

leeAe .

# Records The solution
Cache capacity per CPU heavily depends on

, your job
Map time per record

Load time per record

Aggregation time per record

6/5/12 44
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Evaluation

Hyracks

b 4

Physical
Plan
IIIIiiIIIII
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Evaluation Methodology

— |teration time
— Cost: iteration time x number of machines

— Fix the data size and scale up # of machines
— Goal: identify cost optimal # of machines

— Start with cost optimal configuration
— Proportionally increase data size and # of machines
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News Recommendation

* Task
— Predict news click-through rate
— Linear Model

* Data
— 120GB in libsvm text format

e Hardware
— 150 Machines in 5 Rack, 1Gbps Ethernet
— Each machine: 8 Cores, 4 Disks, 16GB RAM

6/5/12
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Iteration time (seconds)

80
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Spark vs. Hyracks Scale-up
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Personalized Advertisement

e Task

— Predict ad click-through rate
— Linear Model, learned with BGD

e Data
— 500GB in VW text format

 Hardware
— 30 Machines in one Rack 1Gbps Ethernet
— Each machine: 8 Cores, 4 Disks, 16GB RAM

6/5/12
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Grounding Experiment
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Results: Optimizer Evaluation

150
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Experiments in the Pregel Model

* Task
— Compute PageRank

* Data
— Yahoo! Webmap as available on Webscope
— 1.4B nodes, 8GB on disk

e Cluster
— 150 Machines in 5 Rack, 1Gbps Ethernet
— Each machine: 8 Cores, 4 Disks, 16GB RAM

6/5/12
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Related Work

* Three OSS systems can run the task
— Hadoop
— Hyracks
— GraphlLab 2 (different computation model)

* Several systems failed despite 3.2TB RAM
— Giraph/Golden Orb (by transitive closure)
— Spark (despite Matei’s help)
— Mahout
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Benefits

* Unifies both ETL and Iterative Computation in
a single framework

— Simplifies Job Composition

* Optimizable Execution Plans
— Imperative for compute clouds
— Supports different optimization goals



Future Work

* Build & package it for consumption

* Optimizer for recursive data flows
— Example: Auto-detect the need for caching

* Expose runtime policies to the DSL layer
— Example: Make fault tolerance optional

* Support Asynchronous Computation

— Important for Graphical Models

6/5/12
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Coordinates

* Hyracks
— http://code.google.com/p/hyracks/

— http://asterix.ics.uci.edu/

e Markus Weimer
— mwelmer@microsoft.com

— @markusweimer
— http://cs.markusweimer.com
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