

Templates for scalable data analysis

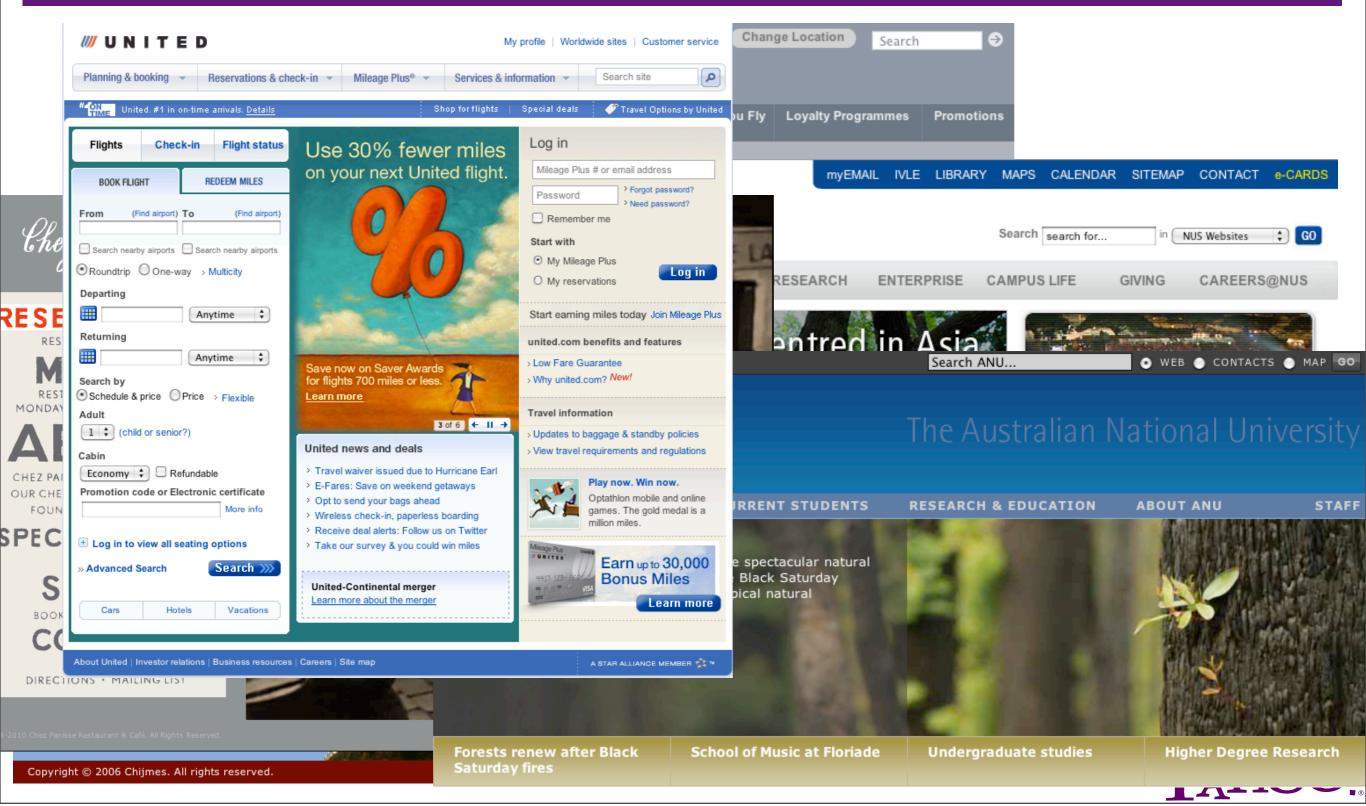
3 Distributed Latent Variable Models

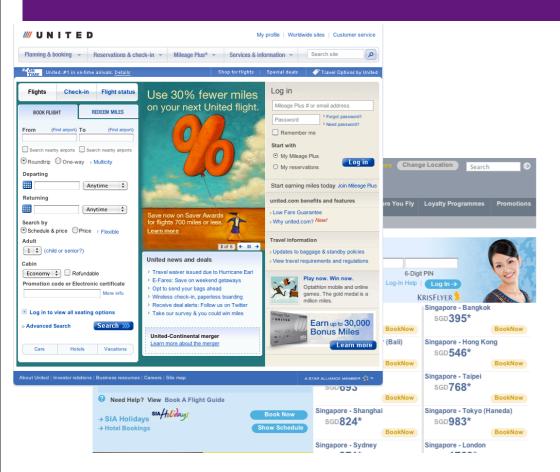
Amr Ahmed, Alexander J Smola, Markus Weimer

Yahoo! Research & UC Berkeley & ANU

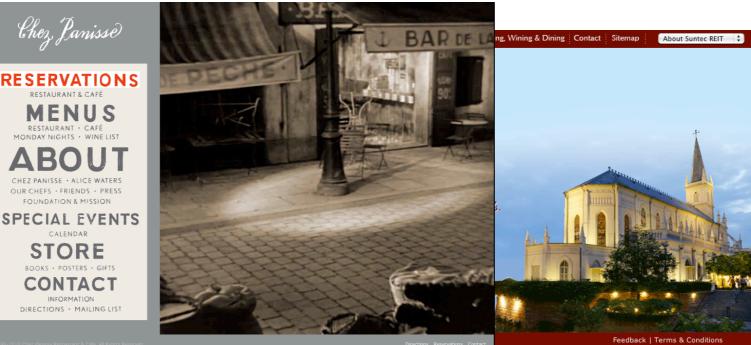
MAGIC EtchASketch® SCREEN · Variations on a theme inference for mixtures Parallel inference parallelization templates Samplers scaling up LDA 61410 MARY "OF STREAM OF TOPE"

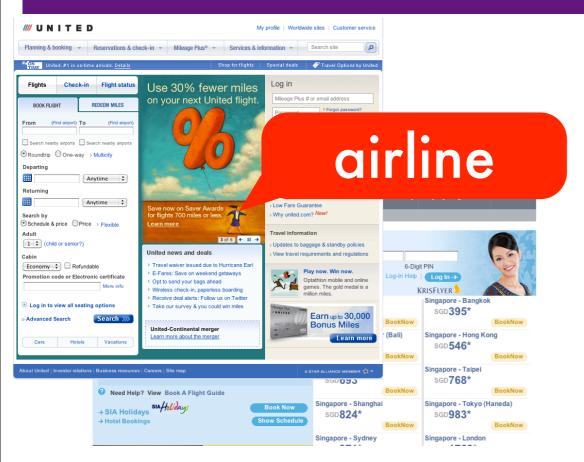




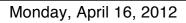


YAHOO!

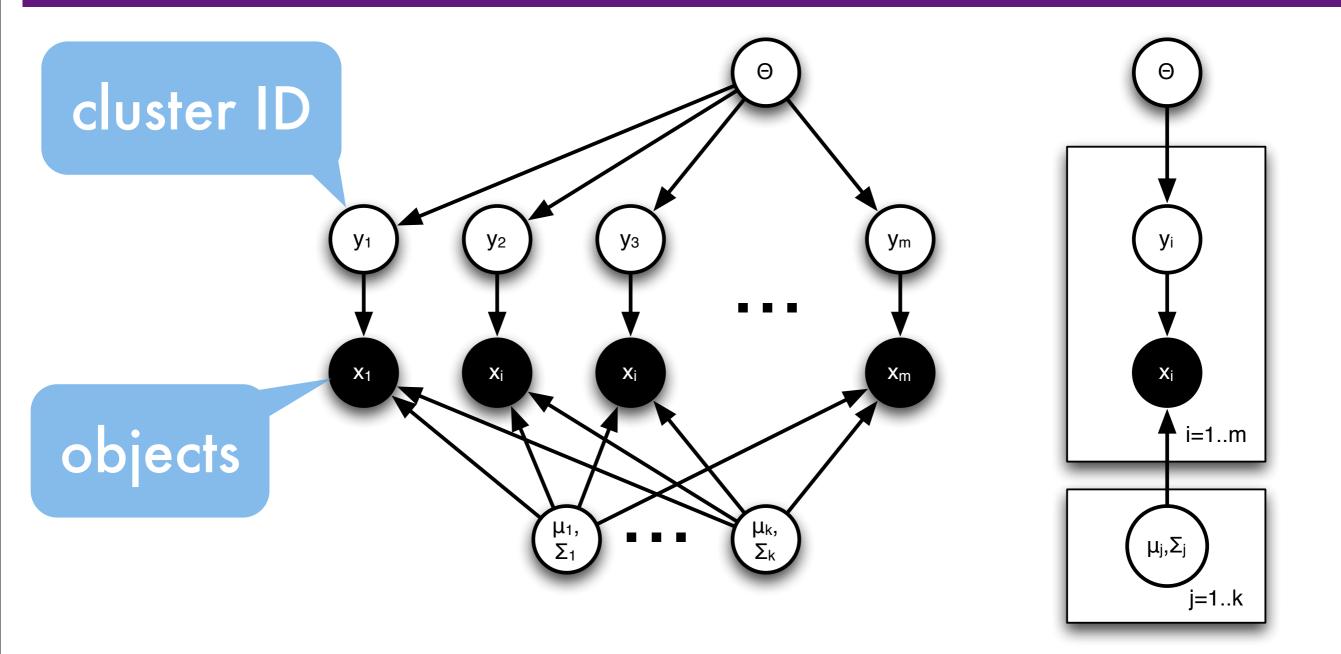




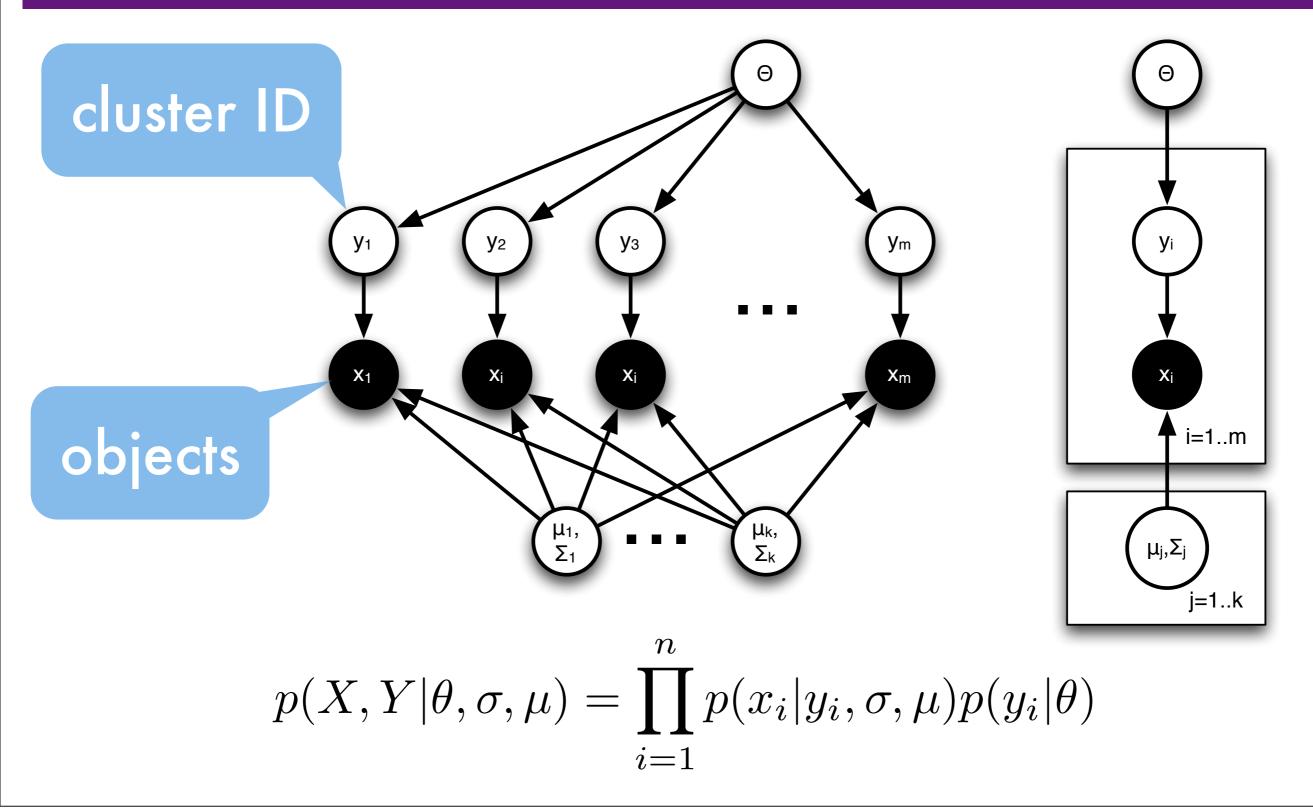
YAHOO!



Generative Model

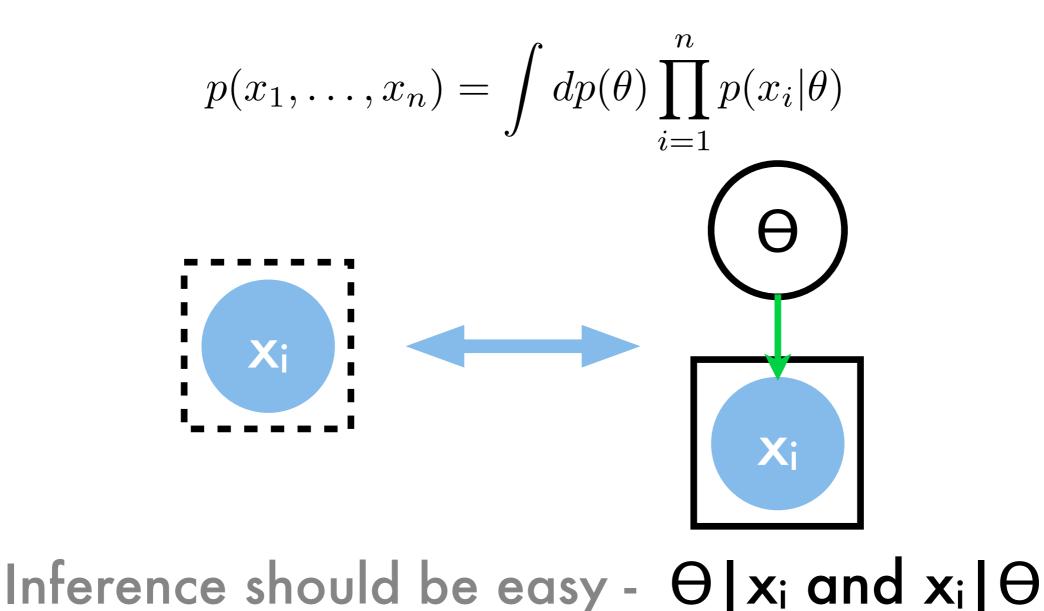


Generative Model



deFinetti

Any distribution over exchangeable random variables can be written as conditionally independent.



Conjugates and Collapsing

• Exponential Family

 $p(x|\theta) = \exp\left(\langle \phi(x), \theta \rangle - g(\theta)\right)$

Conjugate Prior

 $p(\theta|\mu_0, m_0) = \exp(m_0 \langle \mu_0, \theta \rangle - m_0 g(\theta) - h(m_0 \mu_0, m_0))$

Posterior

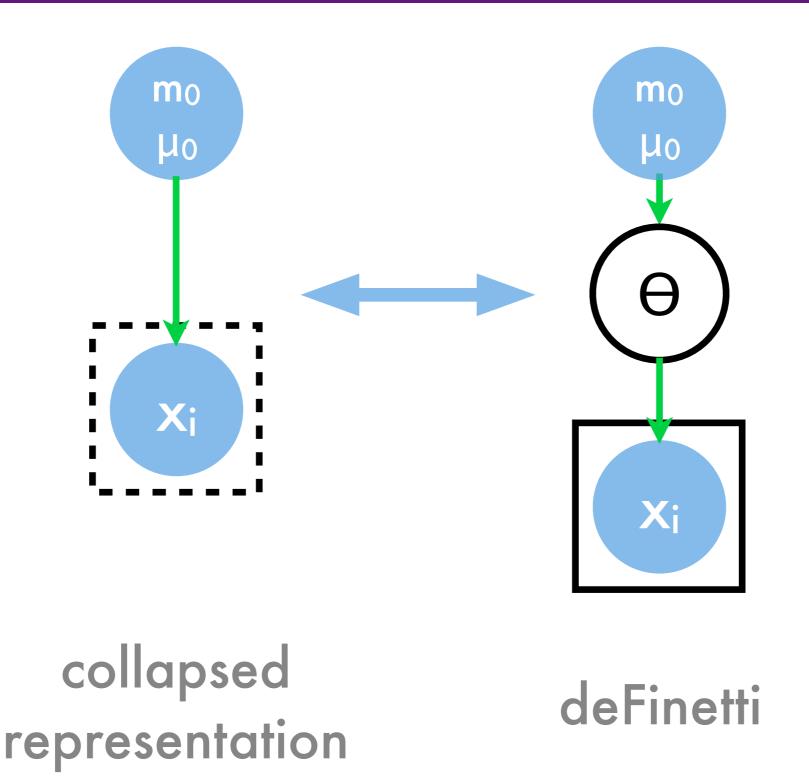
 $p(\theta|X, \mu_0, m_0) \propto \exp((\langle m_0\mu_0 + m\mu[X], \theta) - (m_0 + m)g(\theta) - h(m_0\mu_0, m_0))$

Collapsing the natural parameter

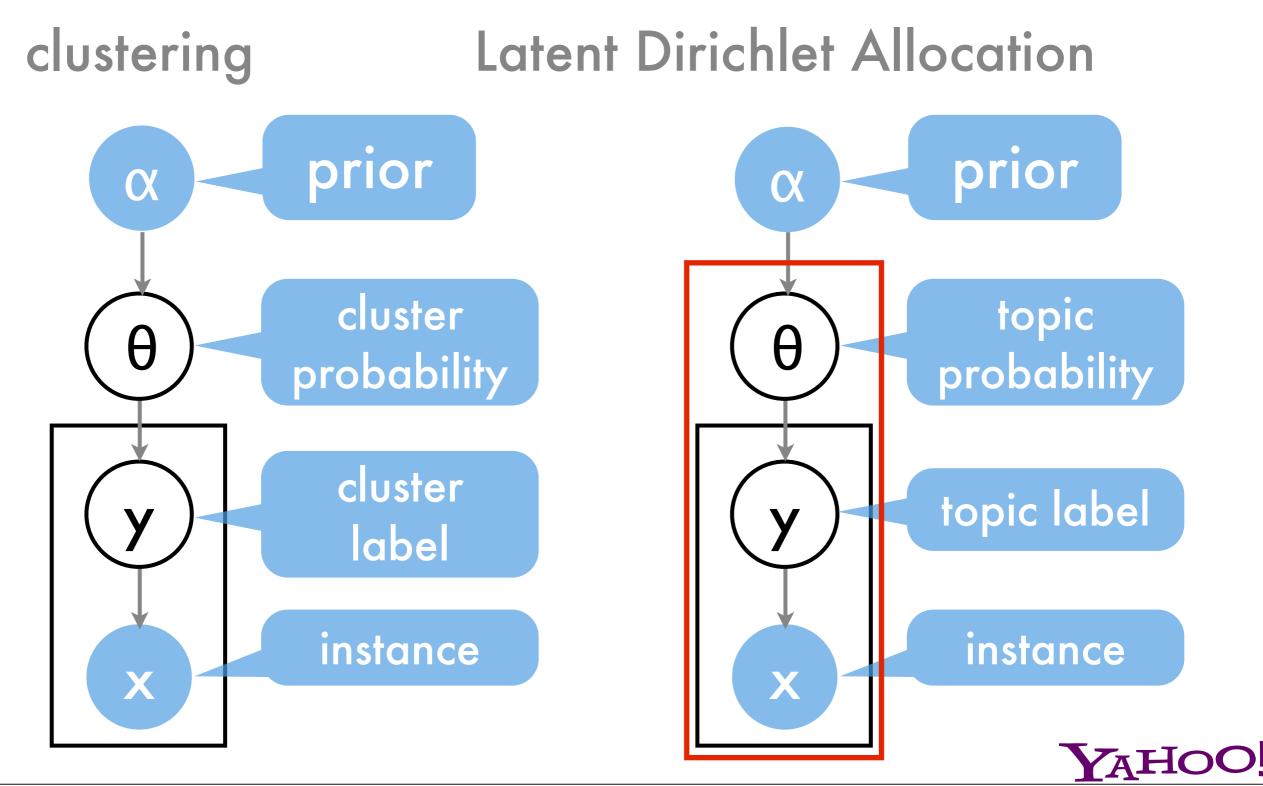
 $p(X|\mu_0, m_0) = \exp\left(h(m_0\mu_0 + m\mu[X], m_0 + m) - h(m_0\mu_0, m_0)\right)$

data

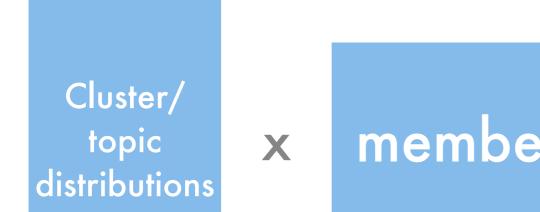
Conjugates and Collapsing



Clustering & Topic Models



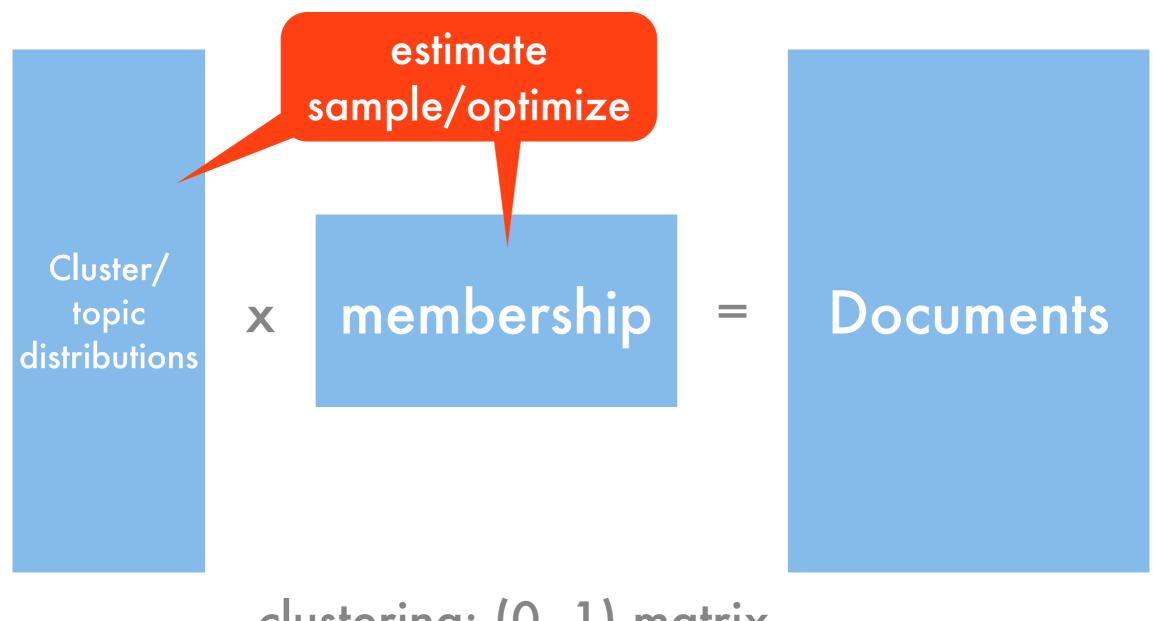
Clustering & Topic Models



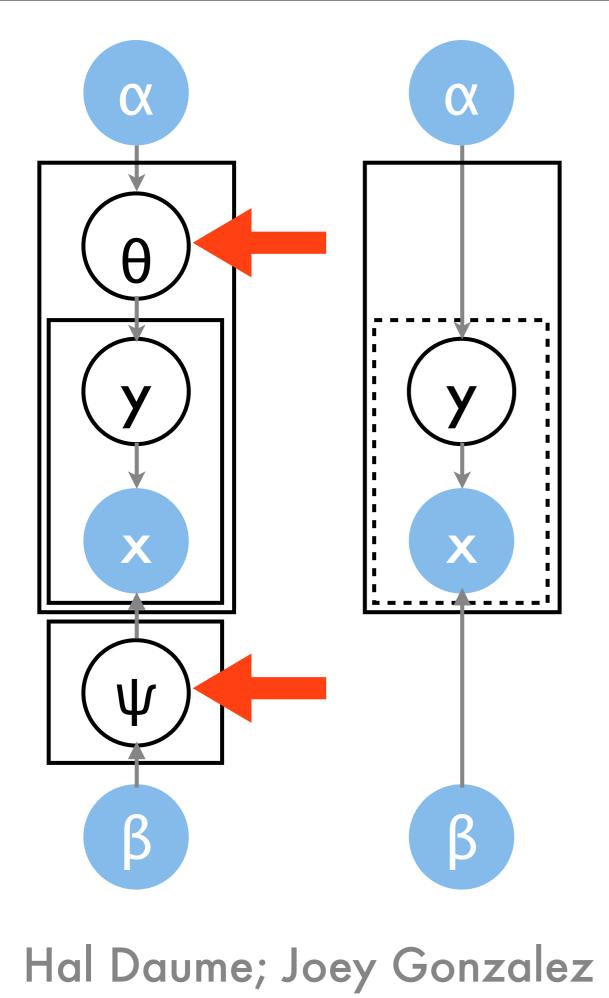
membership = Documents

clustering: (0, 1) matrix topic model: stochastic matrix LSI: arbitrary matrices

Clustering & Topic Models

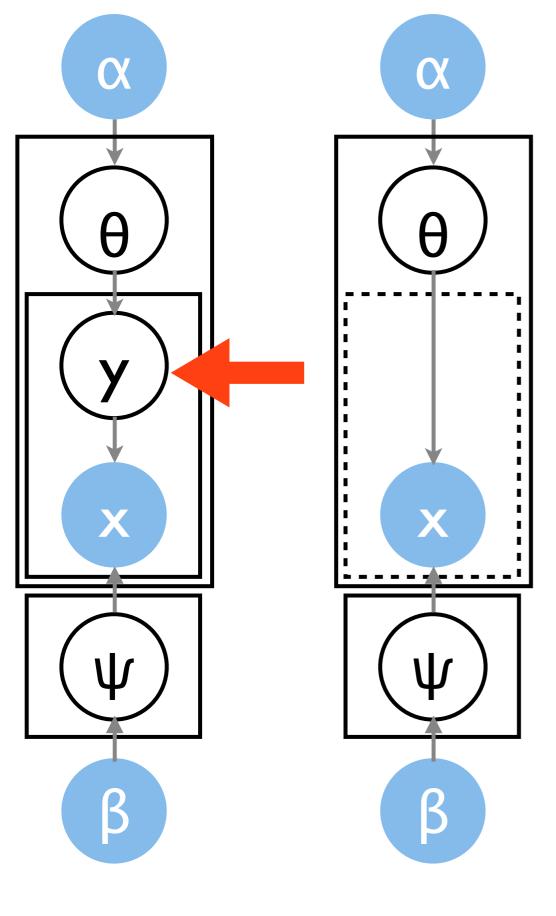


clustering: (0, 1) matrix topic model: stochastic matrix LSI: arbitrary matrices



V1 - Brute force maximization

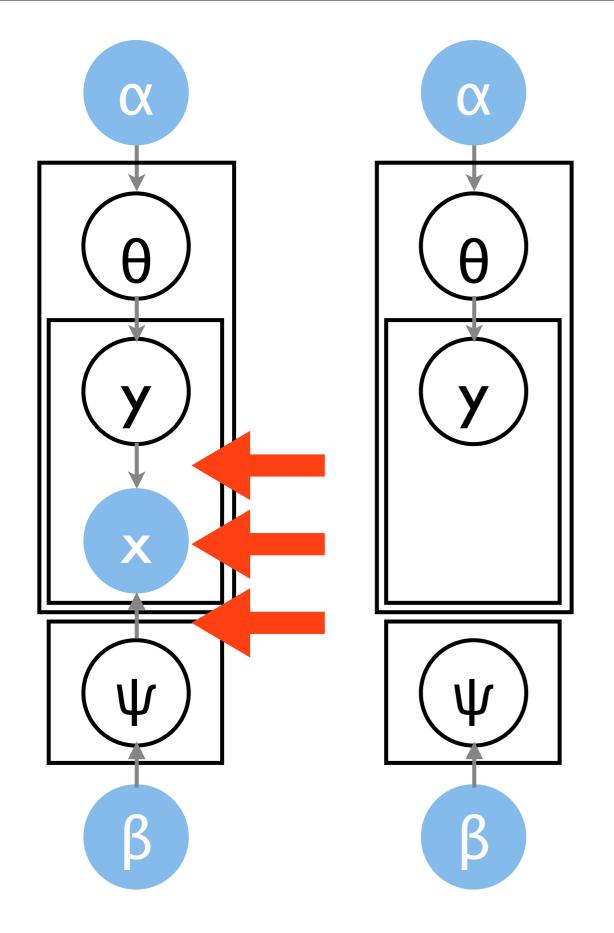
- Integrate out latent parameters θ and ψ $p(X, Y | \alpha, \beta)$
- Discrete maximization problem in Y
- Hard to implement
- Overfits a lot (mode is not a typical sample)
- Parallelization infeasible



Hoffmann, Blei, Bach (in VW)

V2 - Brute force maximization

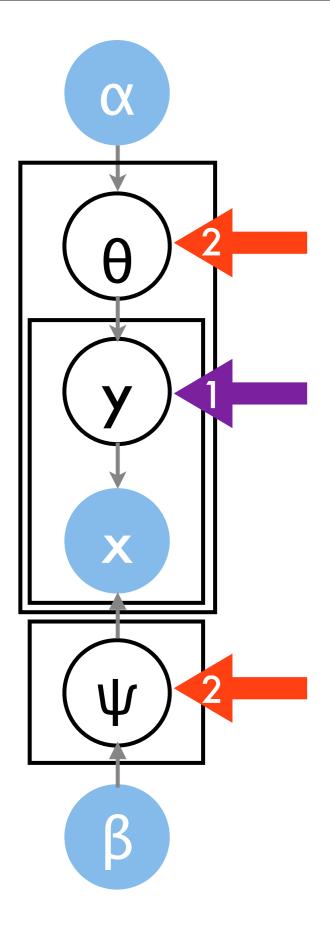
- Integrate out latent parameters y $p(X,\psi,\theta|lpha,eta)$
- Continuous nonconvex optimization problem in θ and ψ
- Solve by stochastic gradient descent over documents
- Easy to implement
- Does not overfit much
- Great for small datasets
- Parallelization difficult/impossible
- Memory storage/access is O(T W) (this breaks for large models)
 - 1M words, 1000 topics = 4GB
 - Per document 1MFlops/iteration



Blei, Ng, Jordan

V3 - Variational approximation

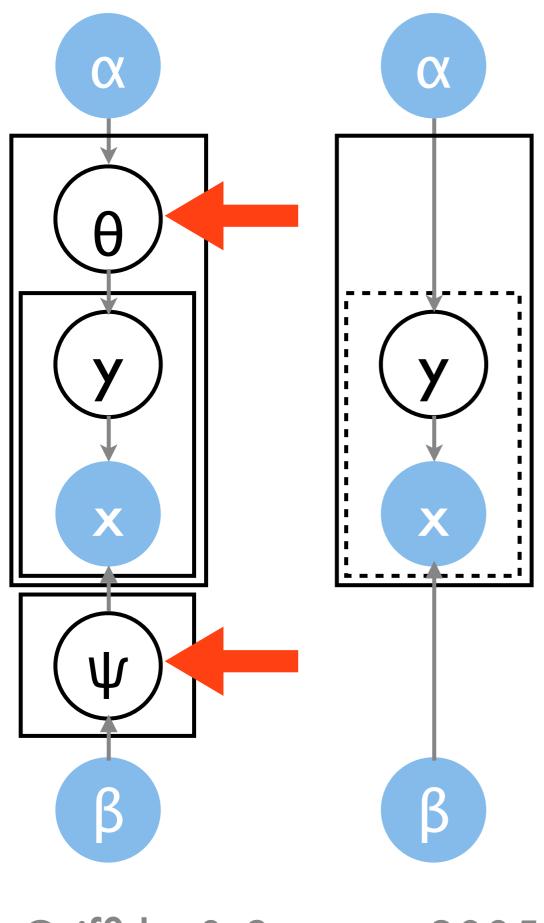
- Approximate intractable joint distribution by tractable factors $\log p(x) \ge \log p(x) - D(q(y)||p(y|x))$ $= \int dq(y) [\log p(x) + \log p(y|x) - q(y)]$ $= \int dq(y) \log p(x, y) + H[q]$
- Alternating convex optimization problem
- Dominant cost is matrix matrix multiply
- Easy to implement
- Great for small topics/vocabulary
- Parallelization easy (aggregate statistics)
- Memory storage is O(T W) (this breaks for large models)
- Model not quite as good as sampling



V4 - Uncollapsed Sampling

- Sample y_{ij} | rest
 Can be done in parallel
- Sample θ|rest and ψ|rest
 Can be done in parallel
- Compatible with MapReduce (only aggregate statistics)
- Easy to implement
- Children can be conditionally independent*
- Memory storage is O(T W) (this breaks for large models)
- Mixes slowly

*for the right model



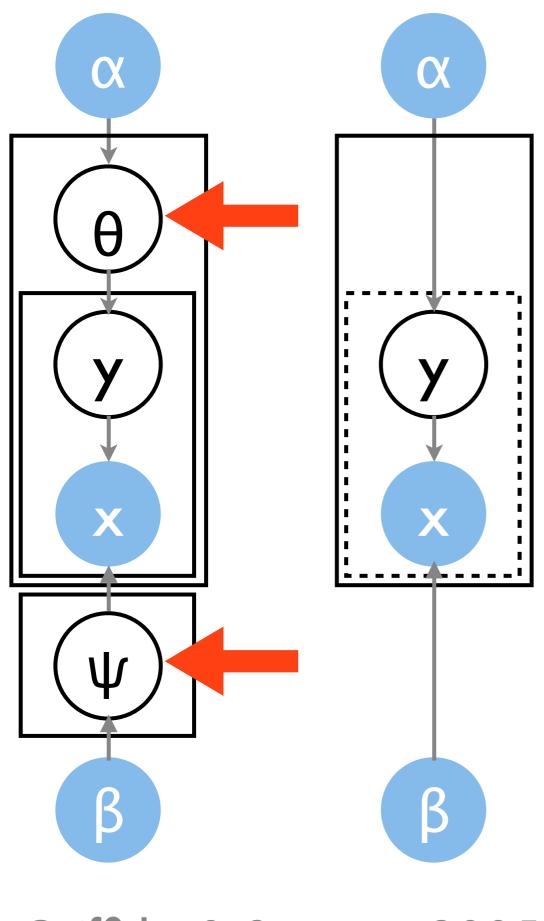
Griffiths & Steyvers 2005

V5 - Collapsed Sampling

- Integrate out latent parameters θ and ψ $p(X, Y | \alpha, \beta)$
- Sample one topic assignment y_{ii} | X,Y⁻ⁱⁱ at a time from

 $\frac{n^{-ij}(t,d) + \alpha_t}{n^{-i}(d) + \sum_t \alpha_t} \qquad \frac{n^{-ij}(t,w) + \beta_t}{n^{-i}(t) + \sum_t \beta_t}$

- Fast mixing
- Easy to implement
- Memory efficient
- Parallelization infeasible (variables lock each other)

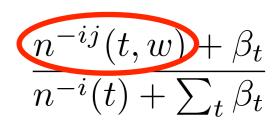


Griffiths & Steyvers 2005

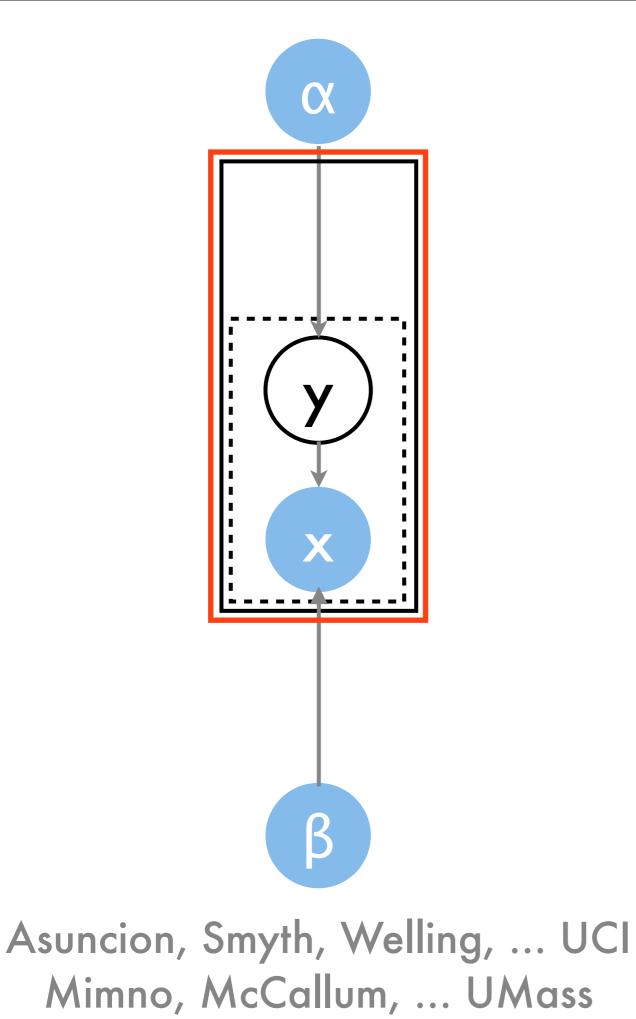
V5 - Collapsed Sampling

- Integrate out latent parameters θ and ψ $p(X, Y | \alpha, \beta)$
- Sample one topic assignment y_{ii} | X,Y⁻ⁱⁱ at a time from

$$\frac{n^{-ij}(t,d) + \alpha_t}{n^{-i}(d) + \sum_t \alpha_t}$$



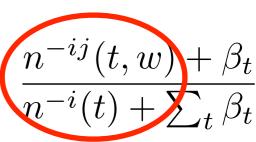
- Fast mixing
- Easy to implement
- Memory efficient
- Parallelization infeasible (variables lock each other)



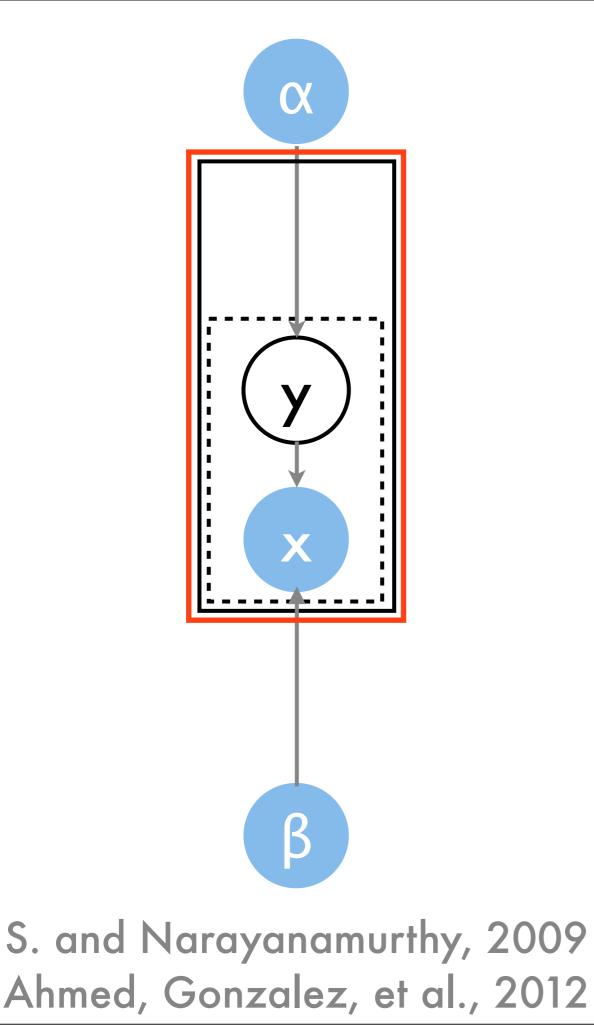
V6 - Approximating the Distribution

 Collapsed sampler per machine

$n^{-ij}(t,d) + \alpha_t$
$\overline{n^{-i}(d) + \sum_t \alpha_t}$

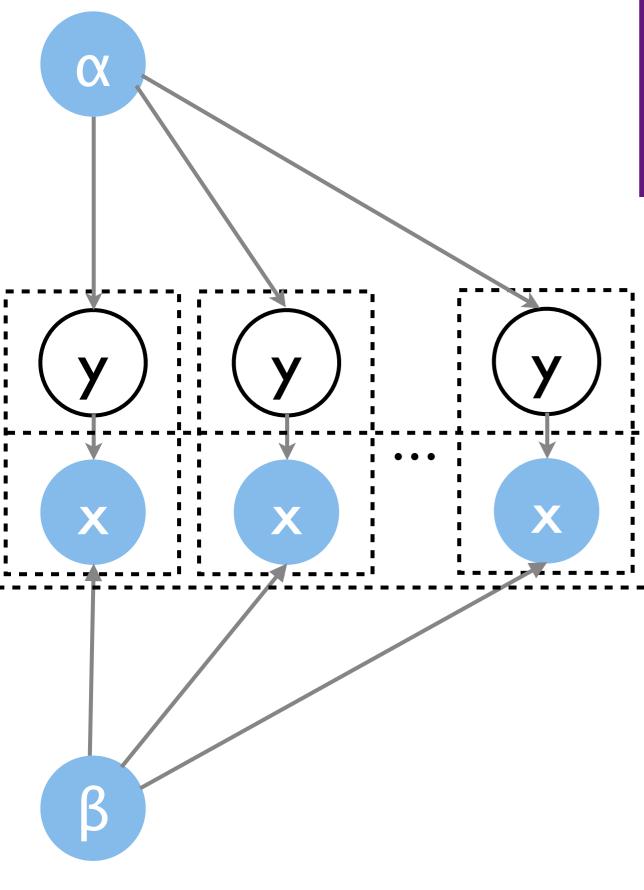


- Defer synchronization between machines
 - no problem for n(t)
 - big problem for n(t,w)
- Easy to implement
- Can be memory efficient
- Easy parallelization
- Mixes slowly/worse likelihood



V7 - Better Approximations of the Distribution

- Collapsed sampler $\frac{n^{-ij}(t,d) + \alpha_t}{n^{-i}(d) + \sum_t \alpha_t} \quad \frac{n^{-ij}(t,w) + \beta_t}{n^{-i}(t) + \sum_t \beta_t}$
- Make local copies of state
 - Implicit for multicore (delayed updates from samplers)
 - Explicit copies for multi-machine
- Not a hierarchical model (Welling, Asuncion, et al. 2008)
- Memory efficient (only need to view its own sufficient statistics)
- Multicore / Multi-machine
- Convergence speed depends on synchronizer quality



Canini, Shi, Griffiths, 2009 Ahmed et al., 2011

V8 - Sequential Monte Carlo

- Integrate out latent θ and ψ $p(X, Y | \alpha, \beta)$
- Chain conditional probabilities

 $p(X, Y | \alpha, \beta) = \prod_{i=1}^{m} p(x_i, y_i | x_1, y_1, \dots, x_{i-1}, y_{i-1}, \alpha, \beta)$

• For each particle sample

 $y_i \sim p(y_i | x_i, x_1, y_1, \dots, x_{i-1}, y_{i-1}, \alpha, \beta)$

 Reweight particle by next step data likelihood

 $p(x_{i+1}|x_1, y_1, \ldots, x_i, y_i, \alpha, \beta)$

 Resample particles if weight distribution is too uneven

- One pass through data
- Data sequential parallelization is open problem
- Nontrivial to implement
 - Sampler is easy
 - Inheritance tree through particles $p(X, Y | \alpha, \beta) = \prod_{i=1}^{m} p(x_i, y_i | x_1, y_1, \dots, x_{i-1}, y_{i-1}, \alpha, \beta)$ is messy
- Need to estimate data likelihood (integration over y), e.g. as part of sampler
- This is multiplicative update algorithm with log loss ...

Canini, Shi, Griffiths, 2009 Ahmed et al., 2011

V8 - Sequential Monte Carlo

- Integrate out latent θ and ψ $p(X, Y | \alpha, \beta)$
- Chain conditional probabilities

• For each particle sample $y_i \sim p(y_i | x_i, x_1, y_1, \dots, x_{i-1}, y_{i-1}, \alpha, \beta)$

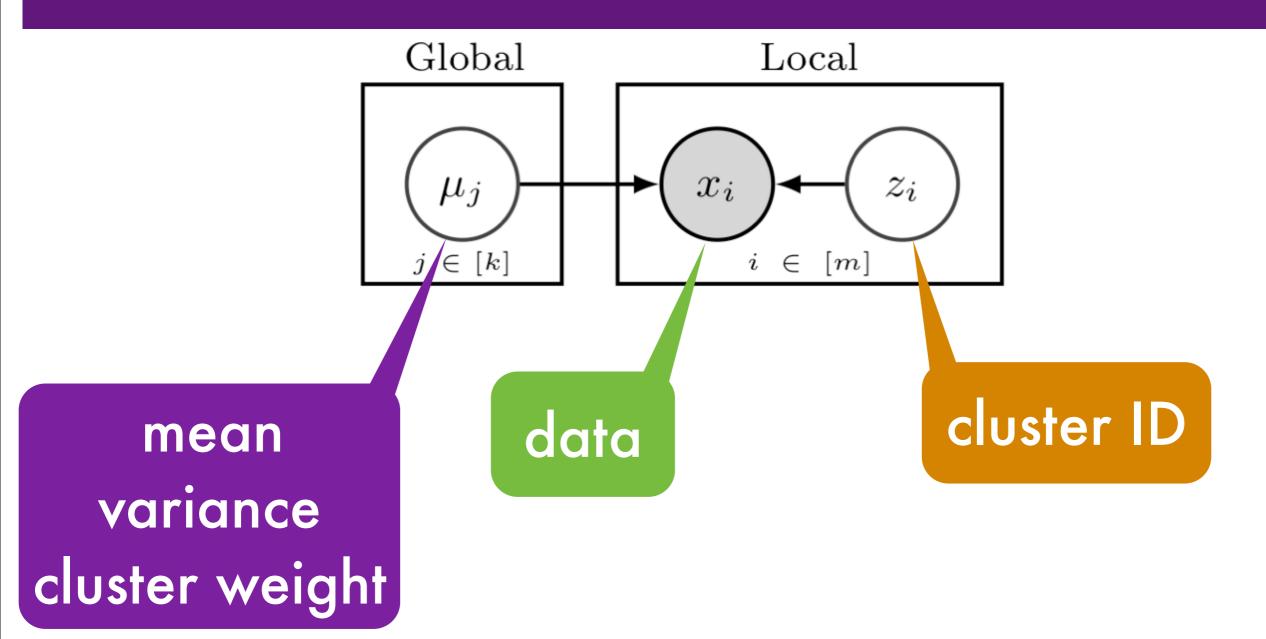
 Reweight particle by next step data likelihood

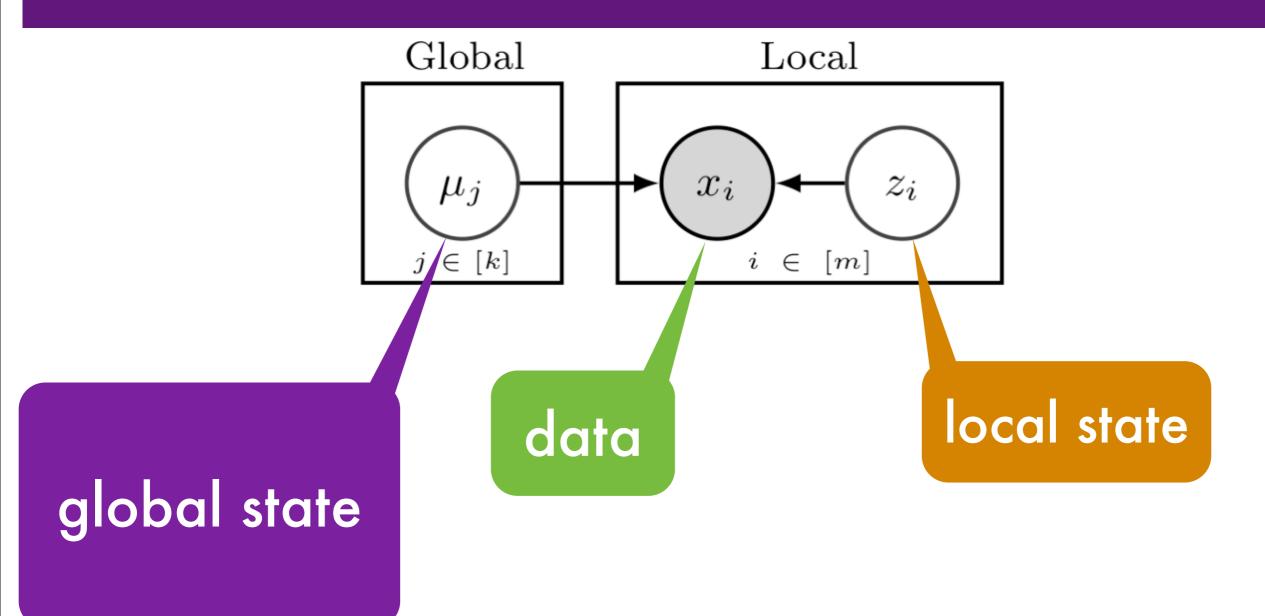
 $p(x_{i+1}|x_1, y_1, \ldots, x_i, y_i, \alpha, \beta)$

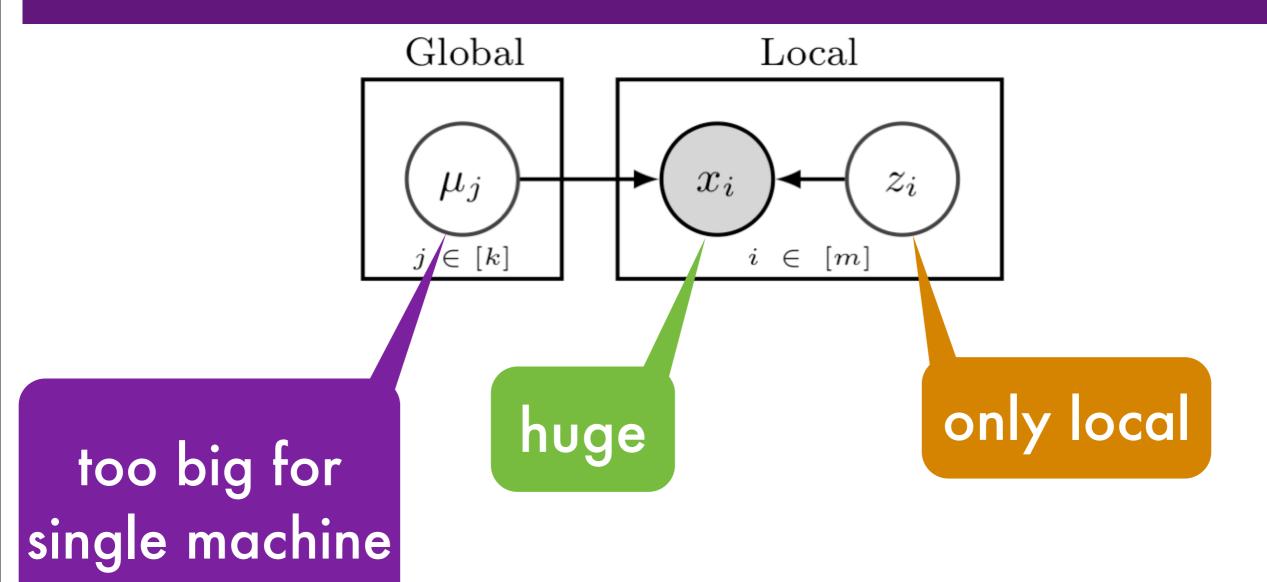
• Resample particles if weight distribution is too uneven

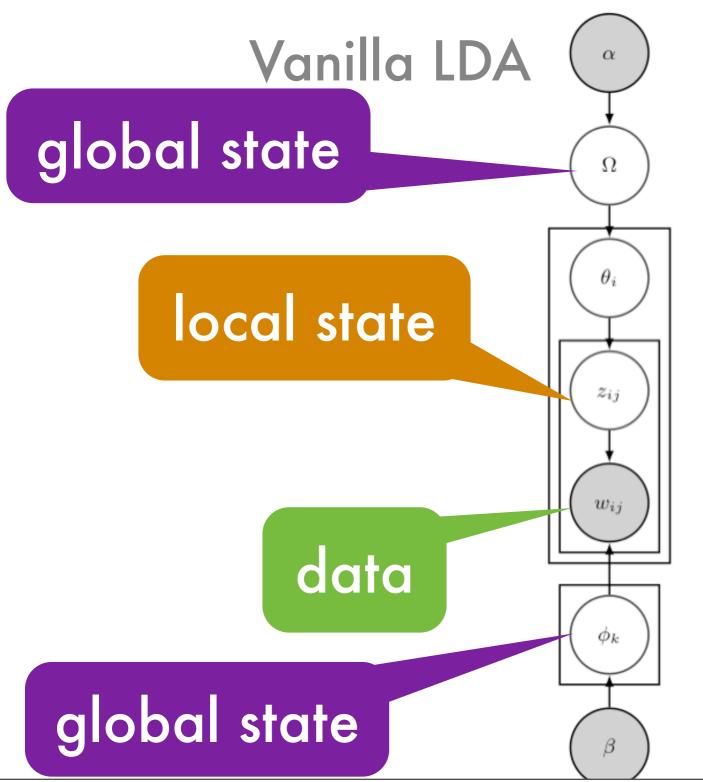
	Uncollapsed	Variational approximation	Collapsed natural parameters	Collapsed topic assignments
Optimization	overfits too costly	easy parallelization big memory footprint	overfits too costly	easy to optimize big memory footprint difficult parallelization
Sampling	slow mixing conditionally independent	n.a.	fast mixing difficult parallelization approximate inference by delayed updates particle filtering sequential	sampling difficult

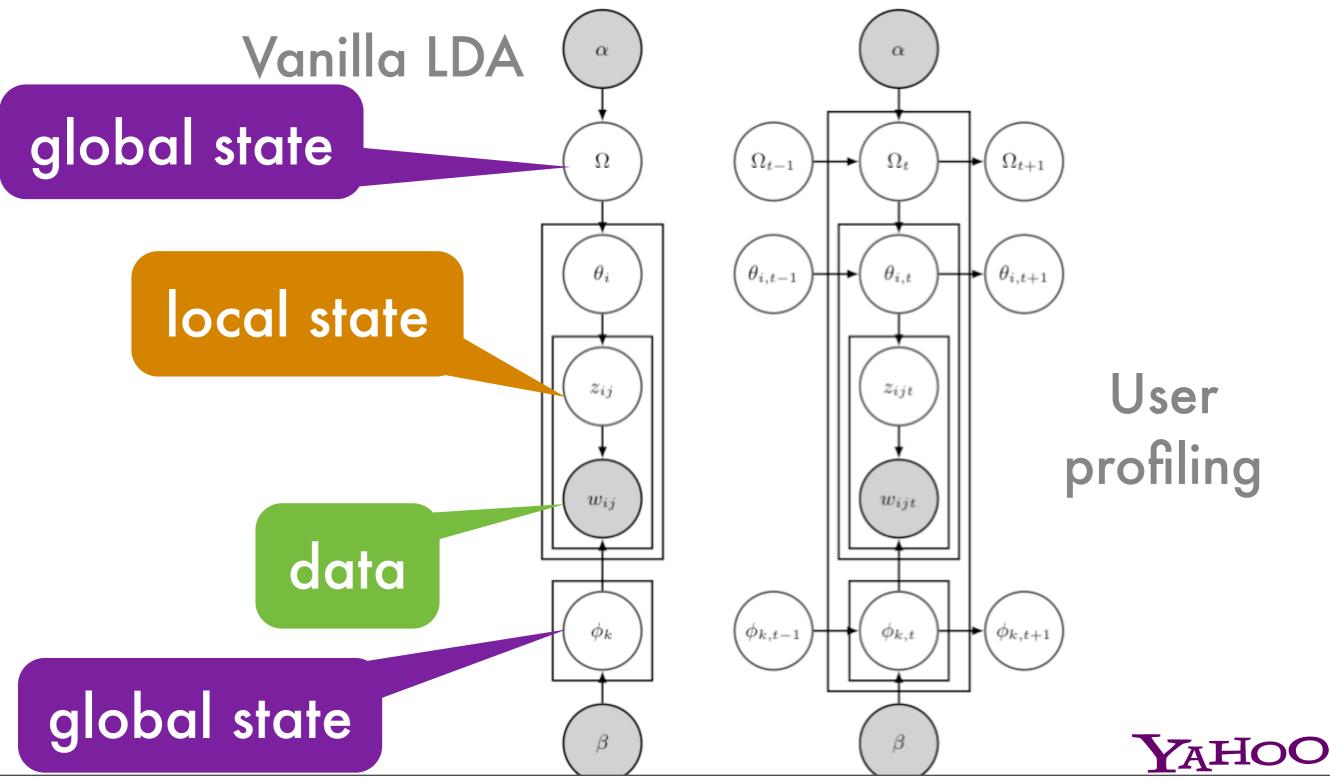


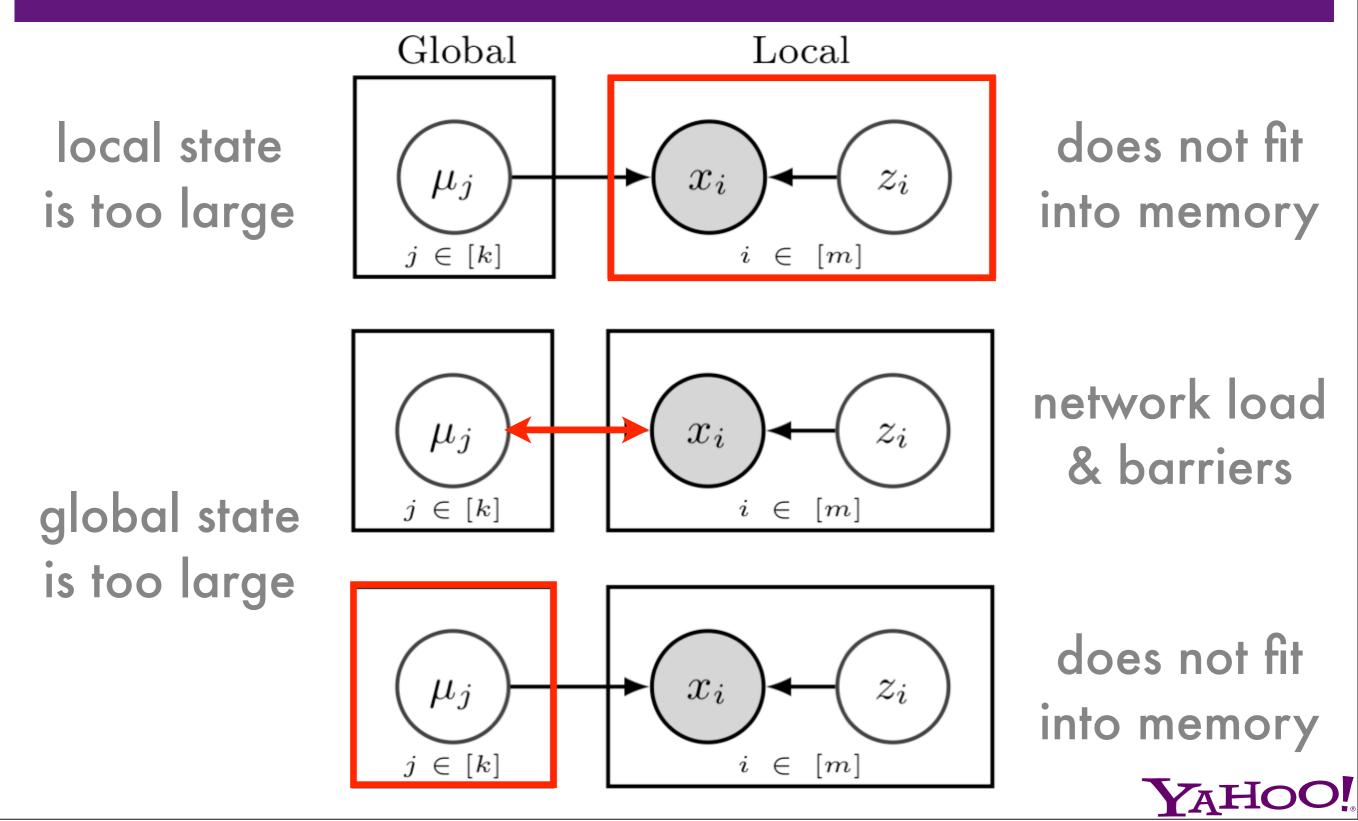


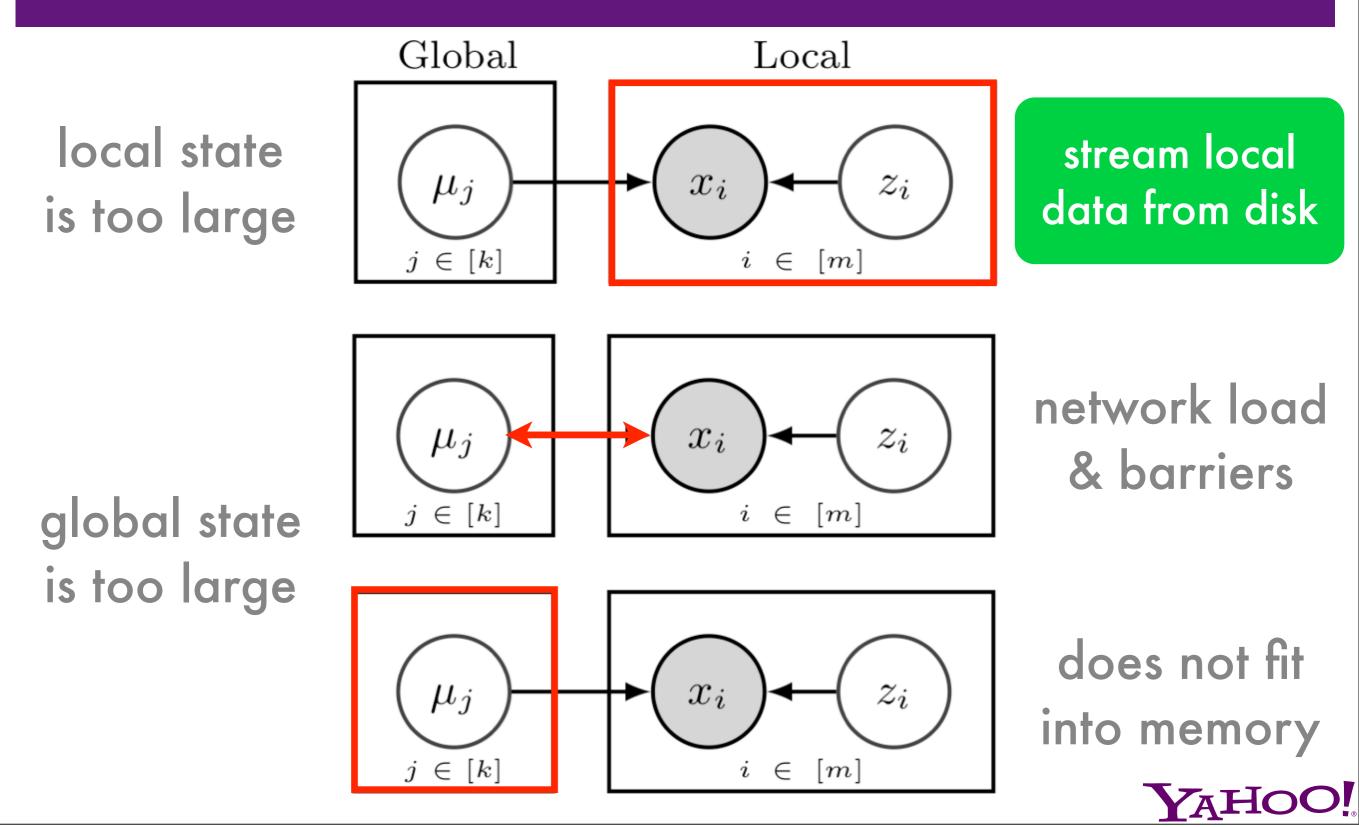


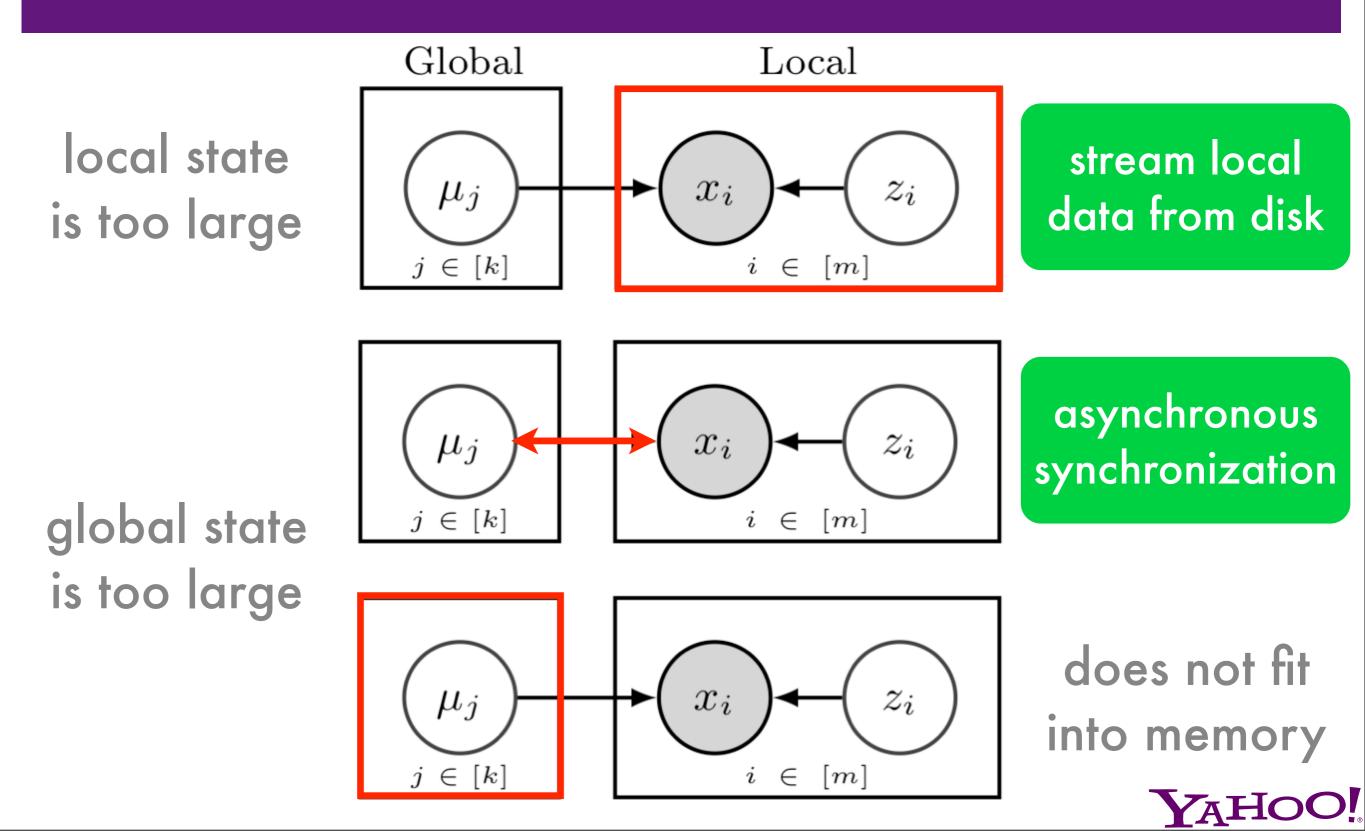


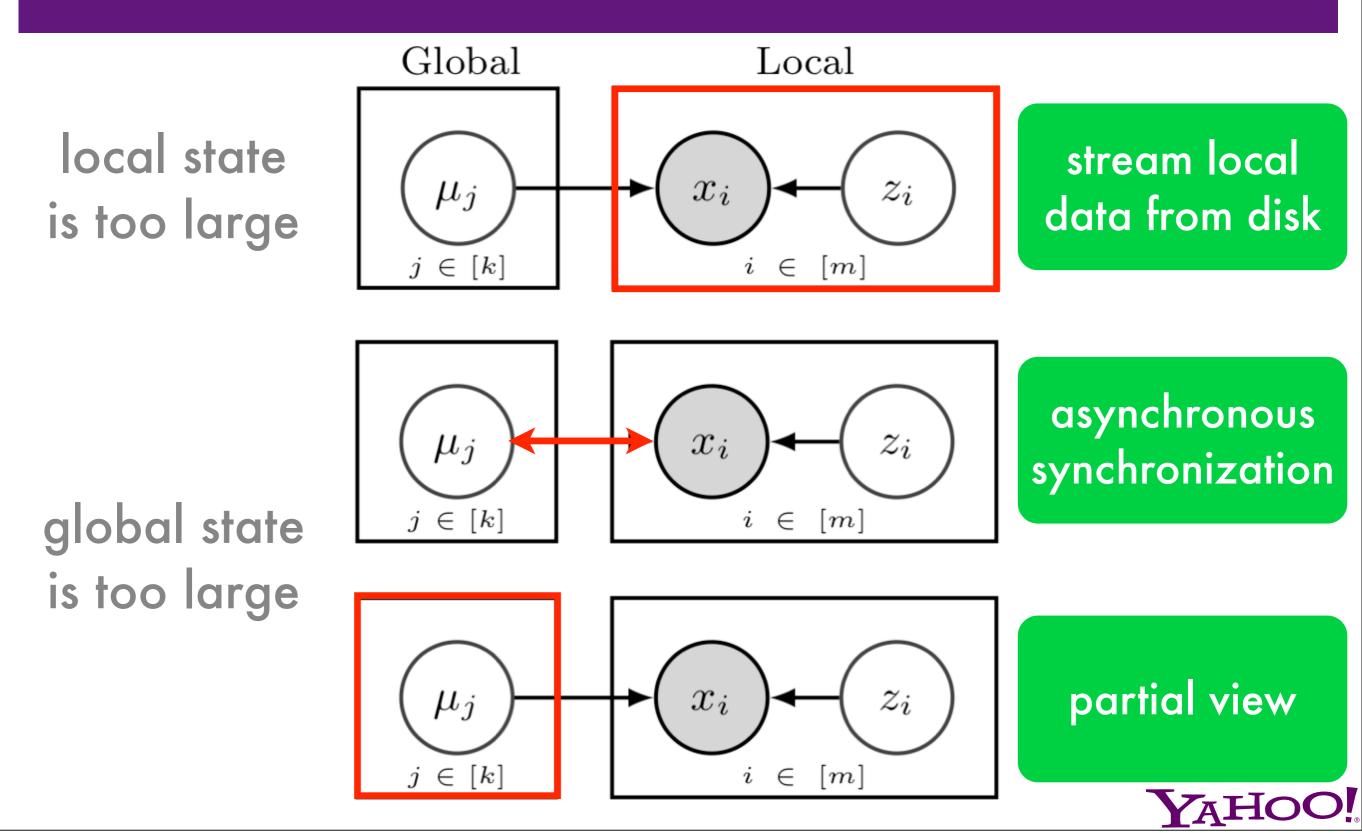




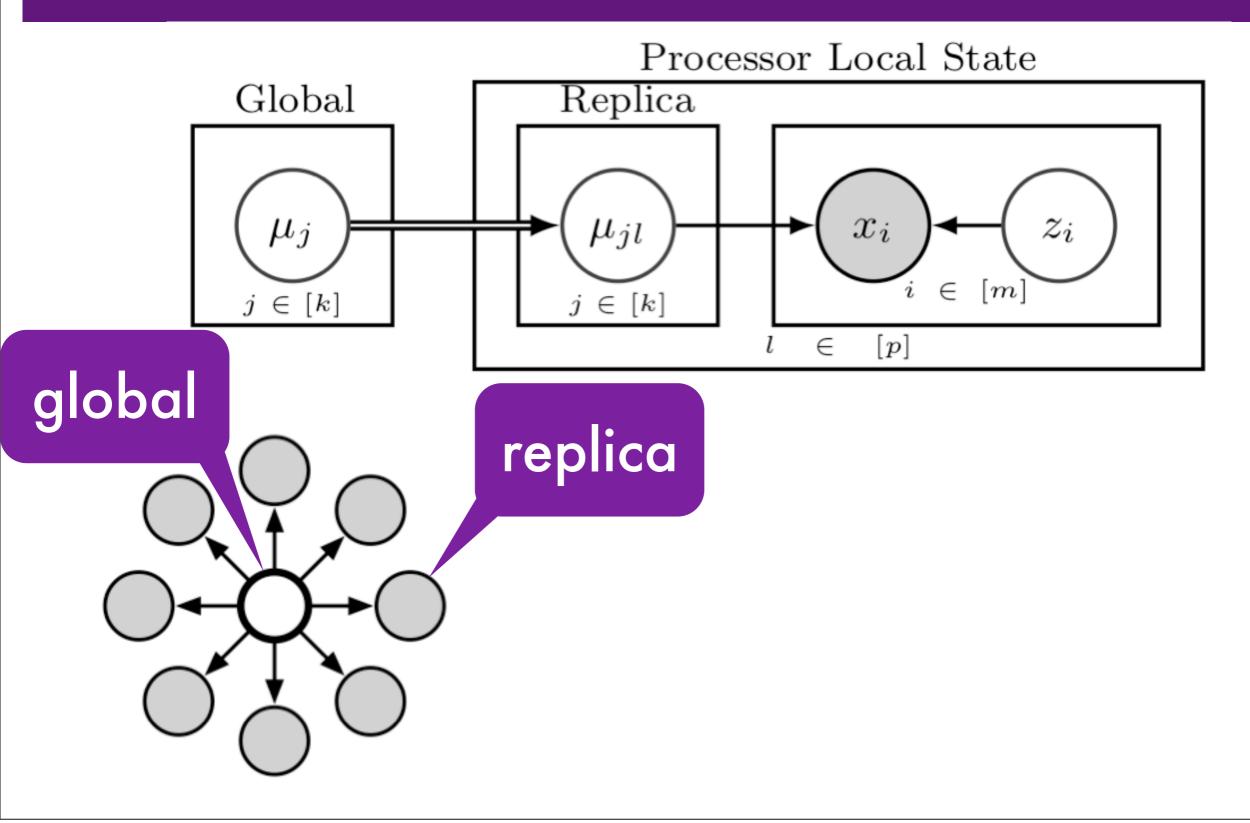




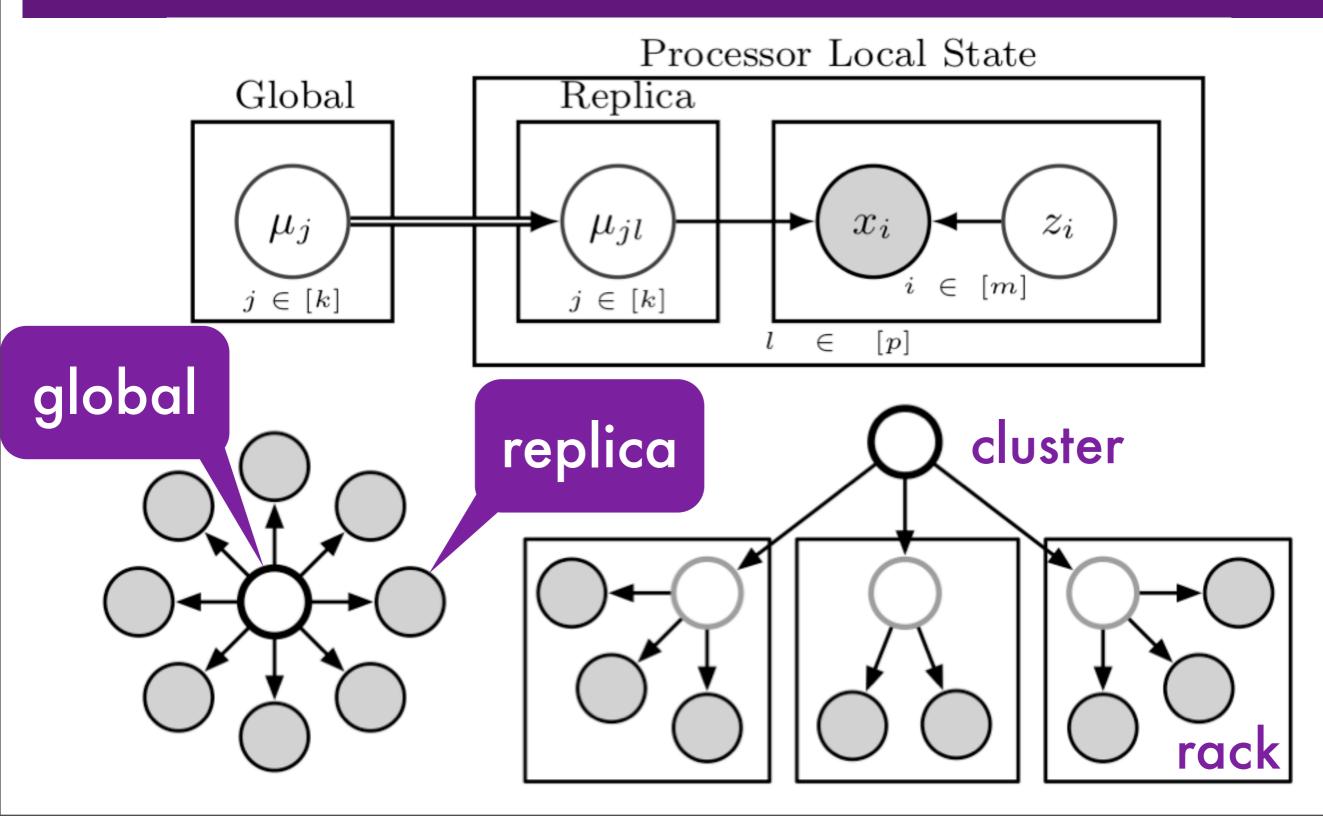




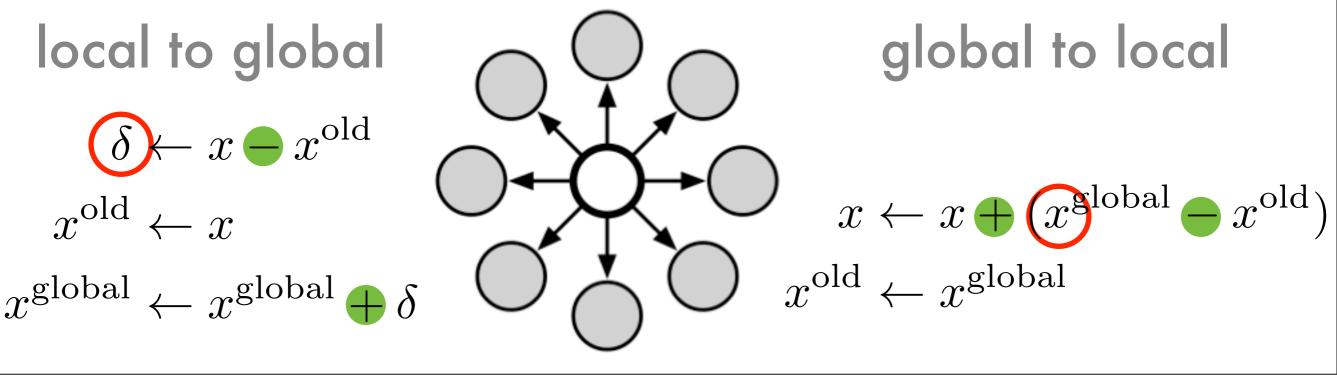
Distribution



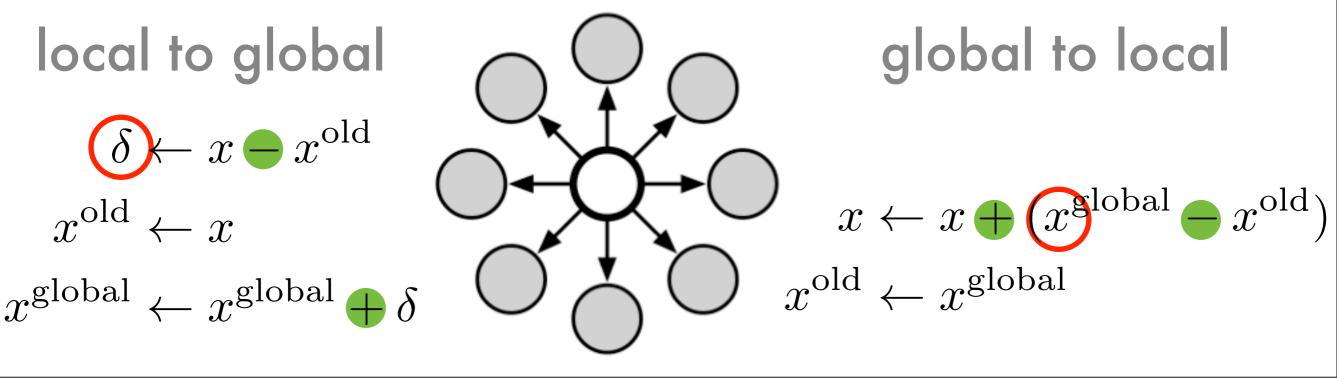
Distribution



- Child updates local state
 - Start with common state
 - Child stores old and new state
 - Parent keeps global state
- Transmit differences asynchronously
 - Inverse element for difference
 - Abelian group for commutativity (sum, log-sum, cyclic group, exponential families)



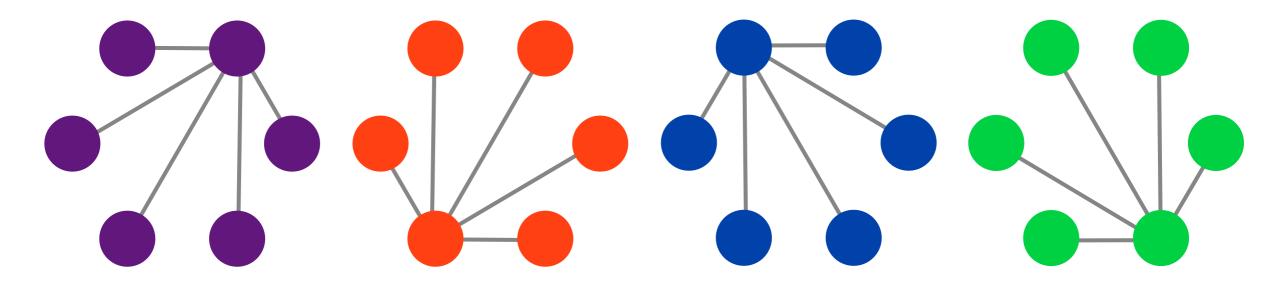
- Naive approach (dumb master)
 - Global is only (key,value) storage
 - Local node needs to lock/read/write/unlock master
 - Needs a 4 TCP/IP roundtrips latency bound
- Better solution (smart master)
 - Client sends message to master / in queue / master incorporates it
 - Master sends message to client / in queue / client incorporates it
 - Bandwidth bound (>10x speedup in practice)



Distribution

- Dedicated server for variables
 - Insufficient bandwidth (hotspots)
 - Insufficient memory
- Select server e.g. via consistent hashing

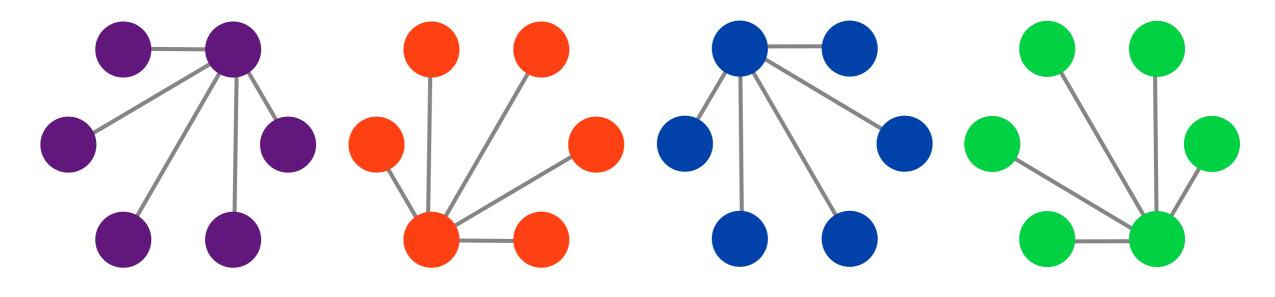
$$m(x) = \operatorname*{argmin}_{m \in M} h(x, m)$$



Distribution & fault tolerance

- Storage is O(1/k) per machine
- Communication is O(1) per machine
- Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)

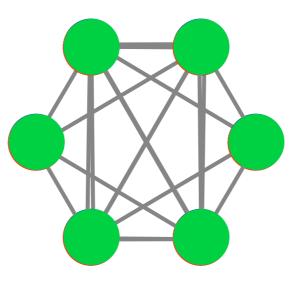
$$m(x) = \operatorname*{argmin}_{m \in M} h(x, m)$$



Distribution & fault tolerance

- Storage is O(1/k) per machine
- Communication is O(1) per machine
- Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)

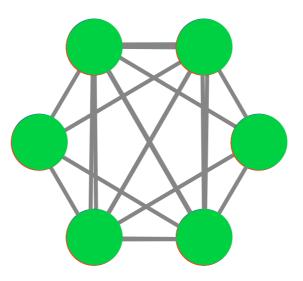
$$m(x) = \operatorname*{argmin}_{m \in M} h(x, m)$$



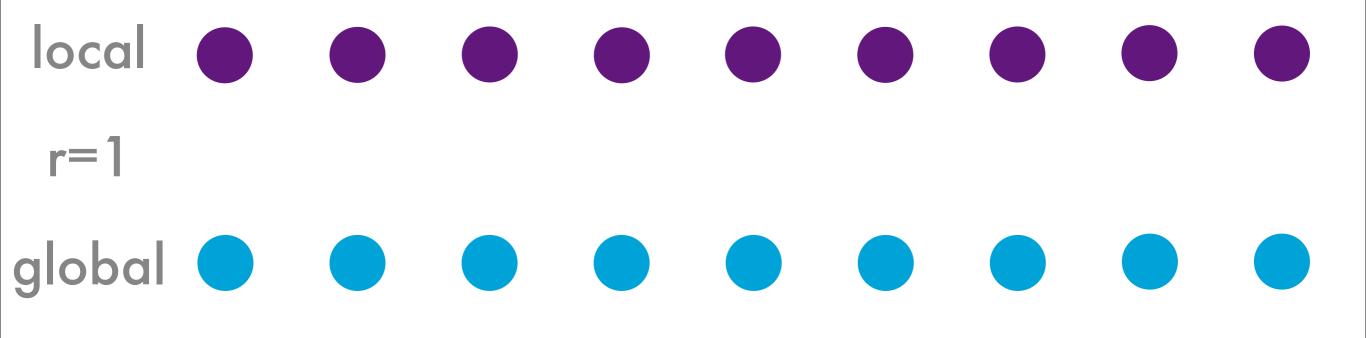
Distribution & fault tolerance

- Storage is O(1/k) per machine
- Communication is O(1) per machine
- Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
- O(k) open connections per machine
- O(1/k) throughput per machine

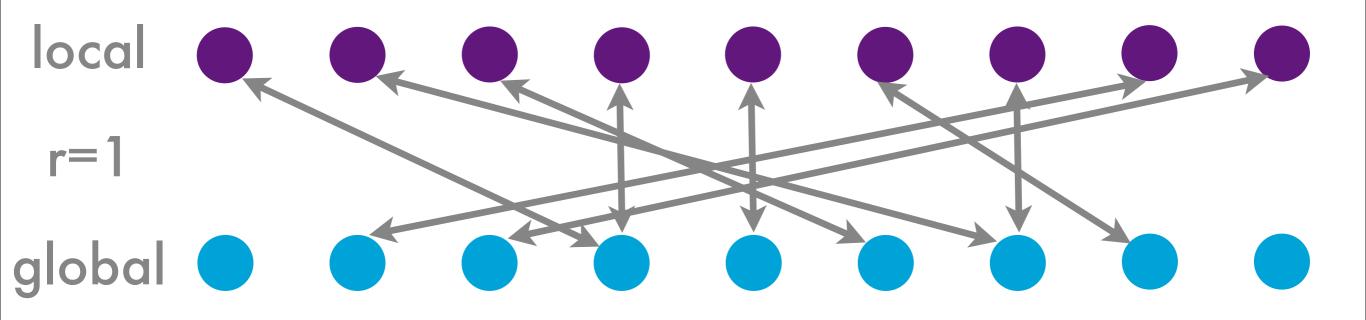
$$m(x) = \operatorname*{argmin}_{m \in M} h(x, m)$$



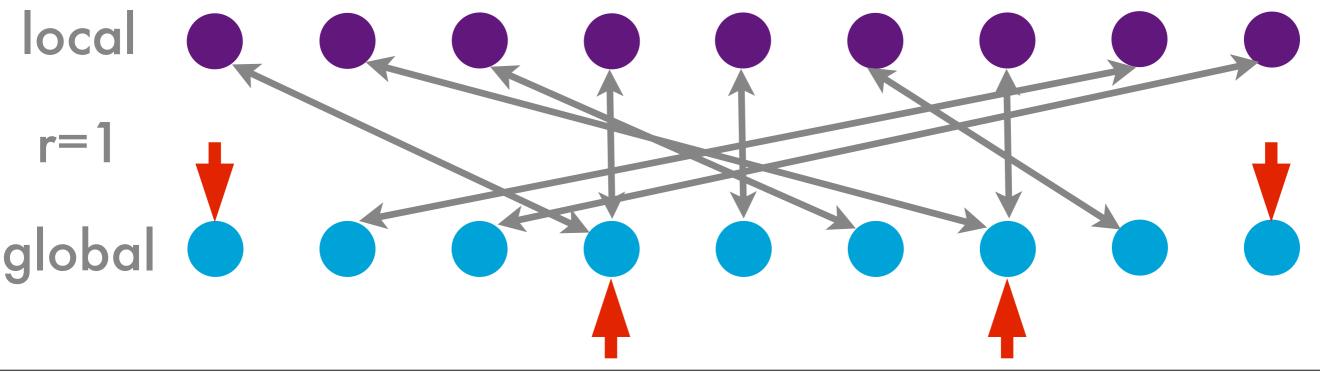
- Data rate between machines is O(1/k)
- Machines operate asynchronously (barrier free)
- Solution
 - Schedule message pairs
 - Communicate with r random machines simultaneously



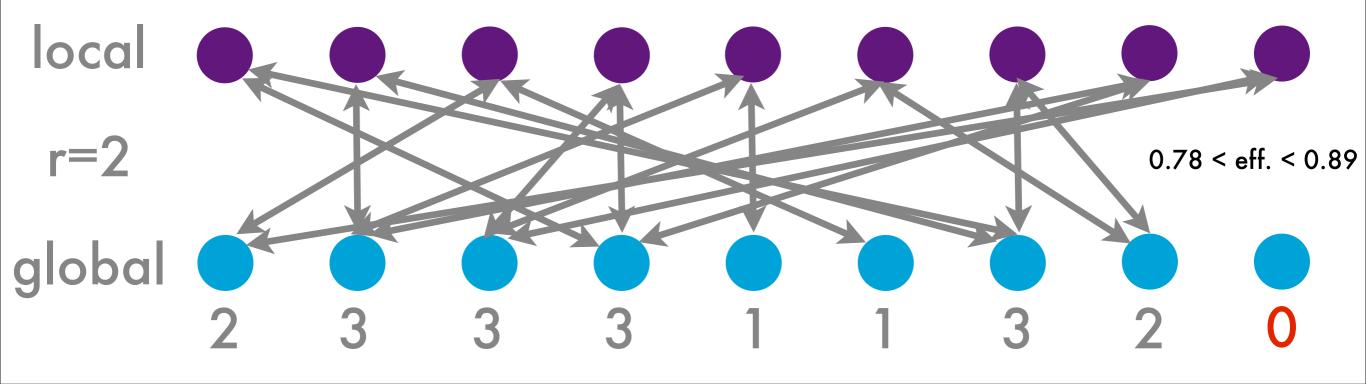
- Data rate between machines is O(1/k)
- Machines operate asynchronously (barrier free)
- Solution
 - Schedule message pairs
 - Communicate with r random machines simultaneously



- Data rate between machines is O(1/k)
- Machines operate asynchronously (barrier free)
- Solution
 - Schedule message pairs
 - Communicate with r random machines simultaneously



- Data rate between machines is O(1/k)
- Machines operate asynchronously (barrier free)
- Solution
 - Schedule message pairs
 - Communicate with r random machines simultaneously

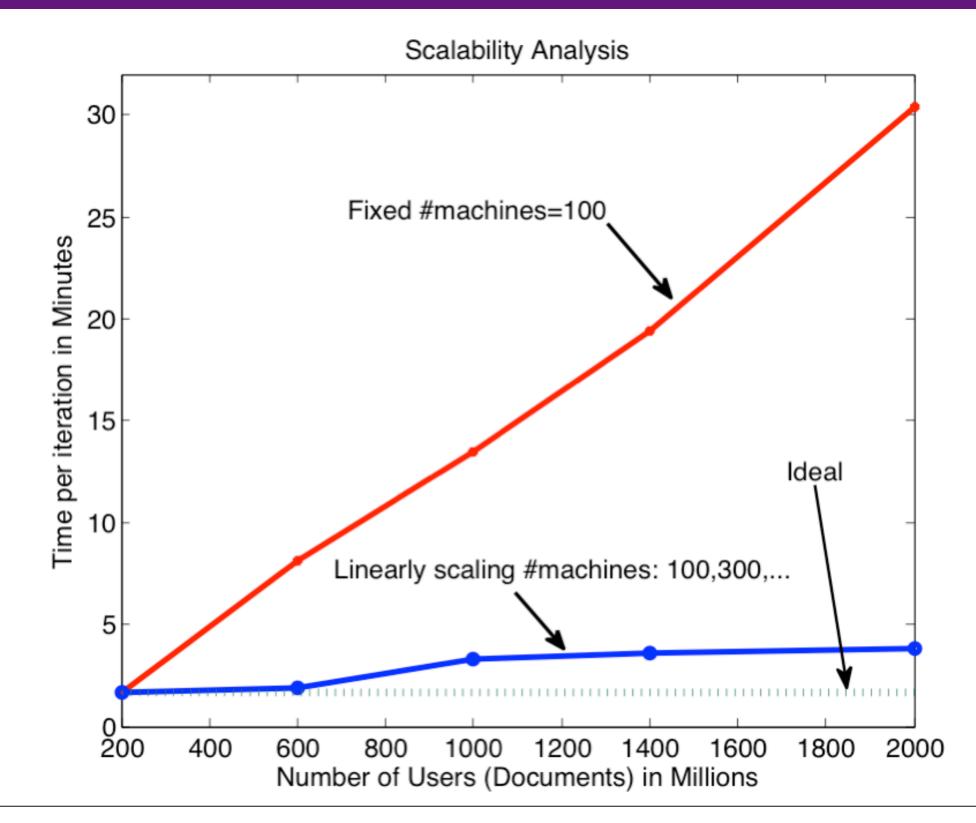


- Data rate between machines is O(1/k)
- Machines operate asynchronously (barrier free)
- Solution
 - Schedule message pairs
 - Communicate with r random machines simultaneously
 - Use Luby-Rackoff PRPG for load balancing
- Efficiency guarantee

$$1 - e^{-r} \sum_{i=0}^{r} \left[1 - \frac{i}{r} \right] \frac{r^{i}}{i!} \le \text{Eff} \le 1 - e^{-r}$$

4 simultaneous connections are sufficient

Scalability

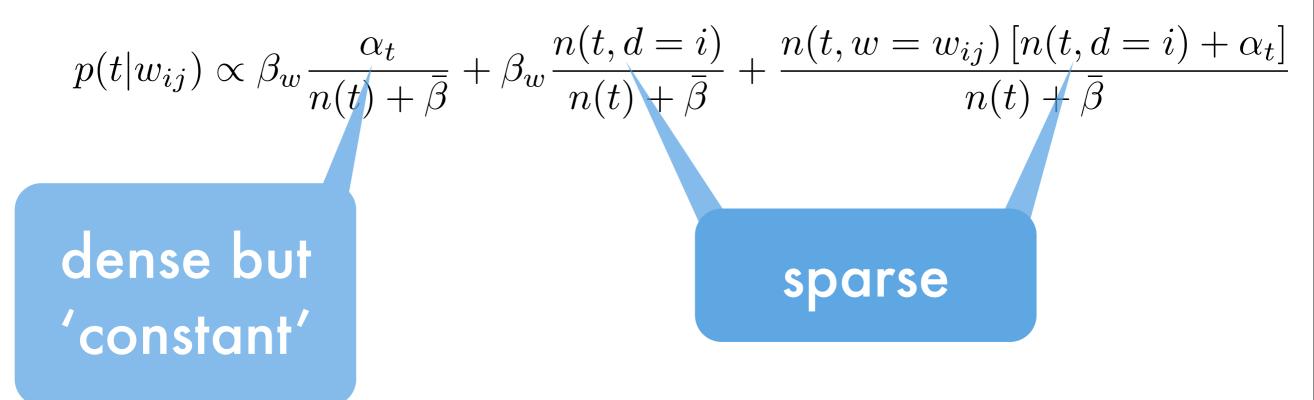


Sampling

- Brute force sampling over large number of items is expensive
 - Ideally want work to scale with entropy of distribution over labels.
 - Sparsity of distribution typically only known after seeing the instances
- Decompose (dense) probability into dense invariant and sparse variable terms
- Use fast proposal distribution & rejection sampling

Exploiting Sparsity

Decomposition (Mimno & McCallum, 2009)
 Only need to update sparse terms per word



• Does not work for clustering (too many factors)

Exploiting Sparsity

Context LDA (Petterson et al., 2009)
 The smoothers are word and topic dependent

 $p(t|w_{ij}) \propto \beta(w,t) \frac{\alpha_t}{n(t) + \overline{\beta}(t)} + \overline{\beta}(w,t) \frac{n(t,d=i)}{n(t) + \overline{\beta}(t)} + \frac{n(t,w=w_{ij})\left[n(t,d=i) + \alpha_t\right]}{n(t) + \overline{\beta}(t)}$

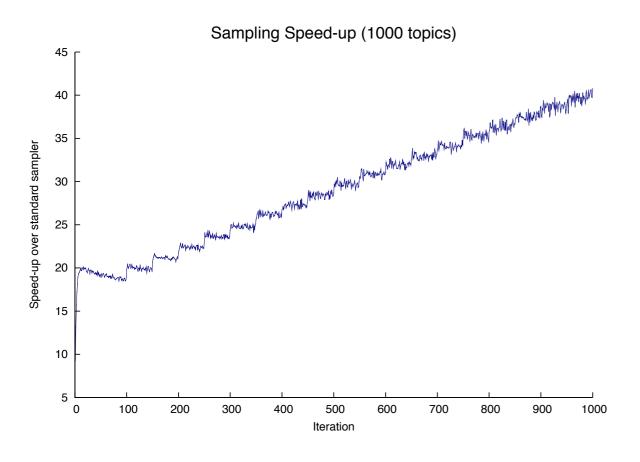
topic dependent, dense

- Simple sparse factorization doesn't work
- Use Cauchy Schwartz to upper-bound first term

$$\sum_{t} \beta(w,t) \frac{\alpha_t}{n(t) + \bar{\beta}(t)} \le \left\| \beta(w,\cdot) \right\| \left\| \frac{\alpha}{n(\cdot) + \bar{\beta}(\cdot)} \right\|$$

Collapsed vs Variational

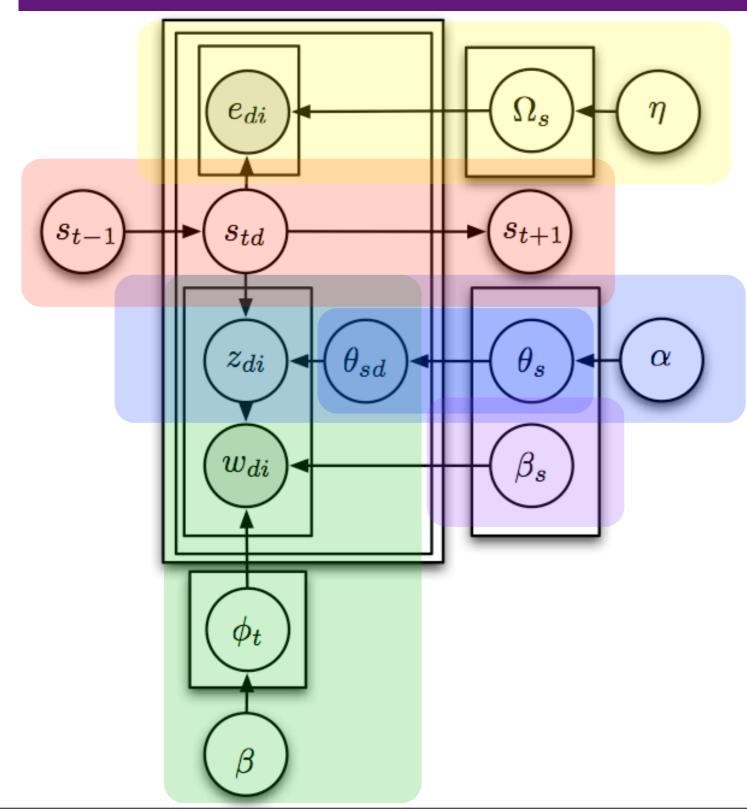
- Memory requirements (1k topics, 2M words)
 - Variational inference: 8GB RAM (no sparsity)
 - Collapsed sampler: 1.5GB RAM (rare words)
- Burn-in & sparsity exploit saves a lot



unif doc doc,word

- Cauchy Schwartz bound
- multilingual LDA
- word context
- smoothing over time

Fast Proposal



- In reality sparsity often not true for real proposal
- Guess sparse proxy
- In the storylines model this are the entities

MAGIC EtchASketch® SCREEN • Variations on a theme inference for mixtures Parallel inference parallelization templates Samplers scaling up LDA 61410 MARY "OF STREAM OF TOPE"