
Machine Teaching
A Machine Learning Approach to Technology Enhanced Learning

Dissertation

Zur Erlangung des akademischen Grades
eines Doktor-Ingenieur (Dr.-Ing.)

Eingereicht von
Diplom Wirtschaftsinformatiker Markus Weimer
geb. in Hadamar

Angenommen vom Fachbereich Informatik
der Technischen Universität Darmstadt

Gutachter: Prof. Dr. Max Mühlhäuser (TU Darmstadt)

Prof. Dr. Alexander J. Smola
Australian National University, Canberra, Australien
Yahoo! Research, Santa Clara, CA, USA

Prof. Dr. Petra Gehring (TU Darmstadt)

Tag der Einreichung: 14.07.2009
Tag der Disputation: 24.09.2009

Darmstädter Dissertationen, D17 Erschienen in 2010 in Darmstadt.

Abstract

Many applications of Technology Enhanced Learning are based on strong assump-
tions: Knowledge needs to be standardized, structured and most of all externalized
into learning material that preferably is annotated with meta-data for efficient re-use.
A vast body of valuable knowledge does not meet these assumptions, including infor-
mal knowledge such as experience and intuition that is key to many complex activities.

We notice that knowledge, even if not standardized, structured and externalized, can
still be observed through its application. We refer to this observable knowledge as PRAC-
TICED KNOWLEDGE. We propose a novel approach to Technology Enhanced Learning
named MACHINE TEACHING to convey this knowledge: Machine Learning techniques
are used to extract machine models of Practiced Knowledge from observational data.
These models are then applied in the learner’s context for his support.

We identify two important subclasses of machine teaching, General and Detailed
Feedback Machine Teaching. GENERAL FEEDBACK MACHINE TEACHING aims to pro-
vide the learner with a “grade-like” numerical rating of his work. This is a direct ap-
plication of supervised machine learning approaches. DETAILED FEEDBACK MACHINE

TEACHING aims to provide the learner with in-depth support with respect to his activ-
ities. An analysis showed that a large subclass of Detailed Feedback Machine Teaching
applications can be addressed through adapted recommender systems technology.

The ability of the underlying machine learning techniques to capture structure and
patterns in the observational data is crucial to the overall applicability of Machine
Teaching. Therefore, we study the feasibility of Machine Teaching from a machine
learning perspective.

Following this goal, we evaluate the General Feedback Machine Teaching approach
using state-of-the-art machine learning techniques: The exemplary Machine Teaching
system is sought to provide the learner with quality estimations of his writing as judged
by an online community. The results obtained in this evaluation are supportive of the
applicability of Machine Teaching to this domain.

To facilitate Detailed Feedback Machine Teaching, we present a novel matrix factor-
ization model and algorithm. In addition to addressing the needs of Machine Teaching,
it is also a contribution to the recommender systems field as it facilitates ranking esti-
mation. An Evaluation in a Detailed Feedback Machine Teaching scenario for software
engineers supports the feasibility of Machine Teaching in that domain.

We therefore conclude that machine learning models capable of capturing important
aspects of practiced knowledge can be found in both, General and Detailed Feedback
Machine Teaching. Machine Teaching does not assume the knowledge to be external-
ized, but to be observable and therefore adds another body of knowledge to Technol-
ogy Enhanced Learning not amenable to traditional Technology Enhanced Learning
approaches.

3

4

Zusammenfassung

Viele erfolgreiche E-Learning Systeme basieren auf strengen Annahmen: Das zu vermit-
telnde Wissen muss strukturiert und standardisiert in Lerninhalte externalisiert sein.
Diese wiederum sollten mit Metadaten angereichert sein, um ihre Wiederverwendung
zu ermöglichen. Diese strikten Anforderungen verhindern es, für viele Aktivitäten ent-
scheidendes informelles Wissen, also unter anderem Erfahrung und Intuition, zu ver-
mitteln.

Wissen, auch wenn es weder standardisiert, strukturiert noch externalisiert wurde,
manifestiert sich in Aktivitäten seiner Träger. Wir nennen dieses beobachtbare Wissen
PRAKTIZIERTES WISSEN. In dieser Dissertation wird MACHINE TEACHING eingeführt,
ein neuer Ansatz zum E-Learning, der diese Tatsache wie folgt ausnutzt: Aus Beobach-
tungsdaten werden mit Methoden des maschinellen Lernens Modelle extrahiert, die
dann im Kontext des Lerners zu seiner Unterstützung eingesetzt werden.

Innerhalb dieses Ansatzes werden zwei wichtige Teilaufgaben eines Machine Tea-
ching Systems identifiziert: Generelles und Detailliertes Feedback. Ziel von Machine
Teaching für Generelles Feedback ist es, die Arbeit des Lerners zu bewerten, etwa durch
,,Zensuren”. Dies kann durch aktuelle Verfahren des überwachten maschinellen Lernen
geleistet werden. Machine Teaching für Detailliertes Feedback soll den Lerner hinge-
gen mit feingranularen Hinweisen zu seiner Arbeit unterstützen. Wir zeigen, dass ein
großer Anteil dieser Aufgabe mittels angepasster Recommender Systems Technologie
bearbeitet werden kann.

Die Nützlichkeit zukünftiger Machine Teaching Systeme wird vor allem davon ab-
hängen, wie gut es mittels maschineller Lernverfahren möglich ist, das Praktizierte Wis-
sen in Form von Mustern und Strukturen aus den Beobachtungsdaten zu extrahieren.
Folglich wird in dieser Dissertation untersucht, ob und in wie weit dies möglich ist.

Die erste Evaluation hierzu erfolgt am Beispiel eines Machine Teaching Systems für
generelles Feedback. Es wird ein System evaluiert, das Texte automatisch bewertet.
Dies geschieht auf Basis vergangener Bewertungen anderer Texte durch eine Internet
Community. Aus der Leistung des Systems bei dieser Aufgabe folgt, dass Machine Te-
aching für generelles Feedback hier erfolgreich eingesetzt werden kann.

Um Machine Teaching für detailliertes Feedback zu ermöglichen, stellen wir ein neu-
es Modell für Recommender Systeme vor. Dieses Modell stellt eine Erweiterung des
Matrixfaktorisierungsansatzes dar. Neben seiner Ausrichtung auf Machine Teaching
ist der Algorithmus der erste, der Reihenfolgevorhersagen für Recommender Syste-
me ermöglicht. Wir evaluieren ihn in einem Machine Teaching Ansatz für detaillier-
tes Feedback im Bereich Softwareentwicklung. Basierend auf einer Quelltextdatenbank
soll dieser auf fehlende Aufrufe hinweisen. Auch hier lassen die empirischen Ergebnis-
se schliessen, dass Machine Teaching in dieser Domäne anwendbar ist.

Machine Teaching stellt also eine machbare Erweiterung des E-Learning dar, dessen
Einsatzbreite mit dem Fortschritt des maschinellen Lernens wächst. Es erweitert bishe-
rige Ansätze um beobachtbares und damit eben auch informelles Wissen, das bisher im
E-Learning nur schwer vermittelbar ist.

5

Acknowledgements

This work would not have been possible without the support and encouragement of
my advisors, colleagues and fellow PhD students. I am grateful to all those who con-
tributed to the outcome of this thesis.

First and foremost, I would like to thank my advisors Max Mühlhäuser (TU Darm-
stadt) and Alex Smola (Australian National University, Yahoo! Research). They sup-
ported me with sharing their respective expertise in Technology Enhanced Learning
and Machine Learning, but even more so with excellent advice on research in general.

My work in the past three years has been defined by fruitful and intense collabora-
tions: The most influential has been with Alexandros Karatzoglou who I worked with
as if he shared an office with me, despite the fact that he held several different positions
at TU Vienna (Austria), CIRO (Sydney, Australia) and INRIA (Rouen, France) during
our collaboration. I am also thankful for the collaboration with and advice from Marcel
Bruch(TU Darmstadt) and Quoc Viet Le (Stanford University), Choon-Hui Theo (Aus-
tralian National University) and my colleagues at NICTA (Canberra, Australia) and
Yahoo! Research (Santa Clara, California) during my respective visits.

I am grateful for having been a member of the interdisciplinary postgraduate school
“eLearning” at TU Darmstadt, the context in which my work was funded. I thank all
advisors and all Ph.D. students of the postgraduate school for providing an inspiring
atmosphere and hosting cross-disciplinary discussions. In particular, Andreas Kamin-
ski and Petra Gehring have been of tremendous help in sharpening many of the argu-
ments in the present thesis by asking the right, tough questions before and in the review
process.

Many thanks are due to all present and former members of the Telecooperation group
at TU Darmstadt. They provided a very friendly place to work and supported this
thesis in many respects. I am also grateful for the support by the Frankfurt Center for
Scientific Computing in running many of the experiments reported in this thesis.

Last but not least, I am very grateful to my family which always supported me.

7

Contents

1 Introduction 17
1.1 Motivation: The need for Machine Teaching 18
1.2 Approach taken . 21
1.3 Organization of this Thesis . 22
1.4 Contributions of this Thesis . 23

2 The Machine Teaching Approach 27
2.1 Preliminaries: A Brief Introduction to Machine Learning 28

2.1.1 Machine Learning Problems . 28
2.1.2 Machine Learning Models . 30
2.1.3 Machine Learning Methods . 31
2.1.4 The Kernel Trick . 34

2.2 Introducing Machine Teaching . 35
2.2.1 Definition . 35
2.2.2 High-Level Example of a Machine Teaching Scenario 37
2.2.3 Machine Teaching Properties . 37
2.2.4 Machine Teaching Assumptions 39

2.3 Major Components of a Machine Teaching System 39
2.3.1 Dynamics of a Machine Teaching System 42
2.3.2 Focus of this Thesis . 44

2.4 General Feedback Machine Teaching . 45
2.5 Detailed Feedback Machine Teaching . 47
2.6 Conclusion . 51

3 General Feedback Machine Teaching for Web Forum Authors 53
3.1 Introduction . 54

3.1.1 Example domain . 54
3.2 State of the Art . 55

3.2.1 Automatic Essay Scoring . 56
3.2.2 Data Characteristics . 56
3.2.3 Feature Inspirations . 56

3.3 Feature Engineering . 57
3.3.1 Surface Features . 58
3.3.2 Lexical Features . 58
3.3.3 Syntactic Features . 59
3.3.4 Forum Specific Features . 59

9

Contents

3.3.5 Similarity features . 59
3.4 Evaluation Procedure . 60

3.4.1 Data Set and Pre-processing . 60
3.4.2 Method . 61

3.5 Evaluation Results and Discussion . 62
3.5.1 Results . 62
3.5.2 Performance Analysis . 63

3.6 Conclusion . 68

4 Generalized Matrix Factorization 69
4.1 Introduction . 70
4.2 State of the Art . 71
4.3 Regularized Matrix Factorization . 73
4.4 Loss Functions . 76

4.4.1 Element Based Loss Functions . 76
4.4.2 Row Based Loss Functions . 79
4.4.3 A faster Ordinal Regression Loss Function 80
4.4.4 An NDCG Loss Function for Matrix Factorization 85
4.4.5 Conclusion . 92

4.5 Optimization . 92
4.5.1 Optimization over the Row Matrix R 95
4.5.2 Optimization over the Row Matrix C 95
4.5.3 New Row Optimization . 96

4.6 Extensions to the Regularized Matrix Factorization Model 96
4.6.1 Row and Column Biases . 96
4.6.2 Adaptive Regularization . 97
4.6.3 Structure Exploitation with a Graph Kernel 98
4.6.4 Row and Column Features . 98

4.7 Conclusion . 99

5 Evaluation on Recommender Systems Data 101
5.1 Evaluation Setup . 102

5.1.1 Evaluation Measures . 102
5.1.2 Evaluation Procedure . 103
5.1.3 Data Sets . 104

5.2 Results and Discussion . 105
5.2.1 Model Extensions . 105
5.2.2 Ranking Losses . 106

5.3 Conclusion . 109

6 Detailed Feedback Machine Teaching for Software Engineers 111
6.1 Introduction . 112

6.1.1 Application Domain: Programming with Frameworks 112
6.2 Related Work . 114

10

Contents

6.3 Matrix Factorization Modeling . 116
6.4 Evaluation Setup . 116

6.4.1 Method . 117
6.4.2 Data Set . 118
6.4.3 Baseline System . 120

6.5 Evaluation Results and Discussion . 121
6.6 Conclusion . 126

7 Conclusions 129
7.1 Summary . 130
7.2 Future Work . 132

Bibliography 139

11

List of Algorithms

1 Ordinal Regression in O
(
m2) . 82

2 Ordinal Regression in O (m log m) . 84
3 Alternate Subspace Descent for Matrix Factorization 93
4 Optimization over R with fixed C . 95
5 Efficient computation of ∂CL . 96

13

List of Figures

1.1 Visualization of Machine Teaching as an alternative to the traditional
technology enhanced learning approach. 21

1.2 Structure of this thesis . 22

2.1 Underfitting . 32
2.2 Overfitting . 33
2.3 Major components of a Machine Teaching system 40
2.4 Mockup of the user interface of a Machine Teaching System for program-

mers. 42

4.1 Machine Teaching and Recommender System data as a matrix 71
4.2 The fast procedure to compute the ordinal regression loss. 83
4.3 Visualization of the sensitivity of DCG to different errors 86
4.4 A convex function (solid) is bounded from below by Taylor approxima-

tions of first order (dashed). Adding more terms improves the bound. . 94

6.1 Mockup of the user interface of a Detailed Feedback Machine Teaching
system for software engineers. 113

6.2 Representing call relations in source code as a sparse matrix when using
classes as the context. 117

6.3 Histogram of the number of calls to SWT per class in Eclipse 119
6.4 Histogram of the number of calls per SWT method 120
6.5 F1, precision and recall results for the Method and Class data for the rule

based approach and matrix factorization using the soft margin and the
regression loss functions. 122

6.6 F1, precision and recall for the matrix factorization system with a soft
margin loss for different value of the weight parameter (on a natural log
scale) . 124

6.7 Results for F1, precision and recall obtained with the matrix factorization
system with a soft margin loss and different values for the number of
factors parameter . 125

15

1 Introduction

Contents
1.1 Motivation: The need for Machine Teaching 18
1.2 Approach taken . 21
1.3 Organization of this Thesis . 22
1.4 Contributions of this Thesis . 23

17

1 Introduction

1.1 Motivation: The need for Machine Teaching

Today, Technology Enhanced Learning is applied in many instances. Most commonly
known to students are Learning Management Systems (LMS). A learning management
system is used to support the processes in a formal learning setting such as within
universities by providing means for content distribution, communication and collabo-
ration. Well known examples include the open source packages Moodle [Com09a] and
Sakai [Com09b] as well as commercial products, e.g. the Blackboard system [Bla09]
used by universities worldwide.

Tools like Power Trainer [QABC09] and Lecturnity [AG09] support the teachers in
creating the content to be made available through the learning management systems.
There are even mature content standards such as the Sharable Content Object Reference
Model (SCORM) [Lea09] and the ones set by the IMS Global Learning Consortium1.
These standards facilitate the use of sophisticated meta-data schemes that describe the
content to support the mix-and-match of content from different authors.

Adaptive hypermedia approaches such as AHA! [DBSS06] build upon these systems
and standards to allow the teacher to build adaptive content by expressing rules like
“To understand concept X, the student shall know concept A, B and C”. These rules are
then used to support the student’s navigation in the content.

Despite these successful applications of technology enhanced learning, there is a
growing interest in what is called “eLearning 2.0” to overcome the inherent limits of
the dominant approaches to technology enhanced learning, including those mentioned
so far. This thesis contributes to this movement by introducing a machine learning
based approach to technology enhanced learning.

Before presenting a critique of the traditional technology enhanced learning approa-
ches, we introduce the following notation:

Notation 1 (Learner). We use the term “learner” throughout this thesis deliberately instead
of “student”, as the proposed approach is primarily aimed at informal learning and not limited
to formal learning scenarios like those found in university courses.

Assumptions of Traditional Technology Enhanced Learning

The approach presented in this thesis departs from traditional technology enhanced
learning by overcoming certain limiting assumptions regarding the knowledge and the
learners which shall be argued below:

Assumptions with respect to Knowledge

We argue that knowledge in traditional technology enhanced learning approaches is
assumed to be standardized, externalized and structured: Content authoring for tech-
nology enhanced learning is costly. Thus, there is a focus on standardized knowledge
that applies to a wide audience. By its very definition, technology enhanced learning

1http://www.imsglobal.org

18

http://www.imsglobal.org

1.1 Motivation: The need for Machine Teaching

enforces the knowledge to be externalized into content, also frequently called learning
material, e. g. in the form of web based training material.

Lastly, one can observe a tendency towards structured knowledge or representations
thereof. Standards like the aforementioned SCORM [Lea09] represent the spearhead of
this movement: They facilitate the exchange of learning materials between courses by
standardizing meta data regarding the sequence of that material.

(Slightly) Exaggerated Conclusion: If one follows this line of thought to the extreme,
content and therefore knowledge is treated like source code to facilitate automated pro-
cesses upon this content such as re-purposing content from one course to another. The
meta-data to support these processes is to be created by the content authors in addition
to the content itself.

Assumptions with respect to Learners

Following their focus on formal learning settings, e. g. in higher education, traditional
technology enhanced learning approaches frequently assume the learner to be a stu-
dent. Students can be assumed to be motivated to learn and to be focused on learning
without distraction.

Following this strong assumption, elaborate models from cognitive science have been
applied to model and even predict the student’s behavior as he uses the technology en-
hanced learning system. One example is the cognitive architecture ACT-R that has been
applied to technology enhanced learning as described e. g. in [AG01] and [LMA87]. The
use of a cognitive architecture allows a system following these approaches to model the
cognition of the learner from his interaction with the system.

(Slightly) Exaggerated Conclusion: If one follows this line of thinking to the extreme,
the learner is thought of as a computer, whose behavior can be modeled and therefore
predicted by a technology enhanced learning system.

Challenging the Assumptions

These assumptions regarding the content and learner in a technology enhanced learn-
ing scenario are far from unexpected: In fact, their prevalence follows best practices
in computer science, where each of its application domains is typically modeled in a
similar manner to the one described above to facilitate its handling through comput-
ers. However, the aforementioned assumptions are not always met in many instances
where technology enhanced learning could be applied.

First and foremost, not all knowledge can be standardized, nor can it always be exter-
nalized in a structured way. The prime example is implicit knowledge such as experience,
intuition and “know-how”. Many activities are based upon implicit knowledge in ad-
dition to explicit knowledge. In an informal way, explicit knowledge can be defined as
textbook, formal, objective or standardized knowledge. Implicit knowledge, on the
other hand, is subjective, vague and informal.

19

1 Introduction

Consider the following examples of activities where implicit knowledge is an impor-
tant aspect:

Example 1 (Cases of Implicit Knowledge).

Bike Riding: Studying the physics of a bike is not sufficient to be able to successfully ride one.

Programming: Programming can only be taught to some extend explicitly through books and
university courses. An important aspect in programming is the experience and intuition
of the programmer. Additionally, the question of what “elegant code” exactly is, will
probably never be answered in an explicit form.

Game Play: The rules for games can be spelled out in great detail and very explicitly. How-
ever, the skills of winning the game are inherently hard to convey explicitly. Instead, this
knowledge is built by making experiences with the game.

In addition to implicit knowledge that is impossible to externalize in a standardized,
structured way, that process is hard or undesirable in other instances for the following
reasons:

Externalizations are costly: Externalizing knowledge is a time consuming and there-
fore expensive process. Thus, it is frequently omitted for knowledge that is not
needed in a similar fashion by a large audience.

Externalizations are easily outdated If the knowledge changes quickly, its externaliza-
tions are frequently outdated. Constant updates of the externalizations only add
to the cost of creating and maintaining them.

The second assumptions of the learner being a student restricts technology enhanced
learning approaches to formal, explicit learning scenarios such as courses in higher
education institutions. This restriction excludes important aspects of life long learning,
most importantly learning-while-doing.

However, the implicit and hard to externalize knowledge is typically transferred in
learning-while-doing scenarios in traditional learning, namely through the apprentice-
ship. Thus, the exclusion of this knowledge from traditional technology enhanced
learning and an its assumptions about the learner being as student as opposed to an
apprentice are congruent.

Therefore, we define the following problem to be discussed in this thesis:
Problem Statement: The field of technology enhanced learning is faced with
a large body of important and valuable knowledge that is not amenable to the
current technology enhanced learning methodology as it is not externalized in a
way suitable to traditional approaches in the field.

20

1.2 Approach taken

Authoring

Author

Consume

Learner

Traditional technology Enhanced Learning

Machine Teaching

Learner

Support

Machine Learning
Models

Observation

Practicioners

Learning
Material

Figure 1.1: Visualization of Machine Teaching as an alternative to the traditional tech-
nology enhanced learning approach.

1.2 Approach taken

Reconsider the example of programming from above: Even though the knowledge
needed to program well is partially implicit, the resulting source code is easily available
and serves as a trace of that knowledge. We will refer to knowledge whose traces are
observable as PRACTICED KNOWLEDGE:

Definition 1 (Practiced Knowledge). PRACTICED KNOWLEDGE denotes all knowledge
that contributed to an observable activity. Activities in that sense include but are not limited to
the creation of artifacts and the following of informally or formally defined processes.

Practiced knowledge therefore includes the knowledge in the focus of traditional
technology enhanced learning, but is not limited to it: it also consists of the implicit or
simply not externalized knowledge needed for the observed activity.

The goal of this thesis is to broaden the scope of technology enhanced learning to
practiced knowledge. In order to transfer practiced knowledge, we propose to use
MACHINE LEARNING at the core of a novel technology enhanced learning approach
named MACHINE TEACHING.

For the purpose of this thesis, machine learning shall be defined as follows:

Definition 2. A MACHINE LEARNING system builds models from data. The process of build-
ing these models is called (machine) learning or training. The data which is used in training is
therefore called TRAINING DATA.

21

1 Introduction

Chapter 1: Motivation

Chapter 2: Introduction and Analysis of the Machine Teaching approach

Chapter 3
General Feedback Machine Teaching for

Web Forums

Chapter 4
A Matrix Factorization based Algorithm for

Machine Teaching

Chapter 5
Evaluation on Recommender Systems Data

Chapter 6
Detailed Feedback Machine Teaching for

Software Engineers

Chapter 7: Conclusions and Future Research

Figure 1.2: Structure of this thesis

The key idea of our approach is to use the observations of successful activities as the
training data of machine learning systems. Therefore, a model is built that captures
the structure of these observations. This model is then brought into the context of the
learner to retrieve feedback, suggestions or general support from it.

One way of visualizing the relationship between traditional technology enhanced
learning approaches and Machine Teaching is depicted in Figure 1.1: Where traditional
technology enhanced learning presents the learner (student) learning material authored
for this purpose, Machine Teaching resorts to automatically learned models build from
data about the activity of practitioners.

Research Question: We hypothesize that machine learning models are capable
of thereby transferring practiced knowledge. The validity of this hypothesis
shall be the topic of this thesis.

1.3 Organization of this Thesis

Figure 1.2 visualizes the structure of this thesis. Chapter 2 introduces the Machine
Teaching approach to technology Enhanced Learning more formally, after a brief intro-
duction to machine learning.

The definition of the approach is followed by an theoretical analysis of its properties

22

1.4 Contributions of this Thesis

and possible applications in the same chapter. An analysis of the major components of
a hypothetical technology enhanced learning system following this approach is used to
identify research results needed in order to facilitate the realization of such a system:

Sensors that allow the Machine Teaching system to monitor both the learners and ex-
perts.

Machine Learning Models capable of capturing the knowledge from the sensor data in
order to provide the learner with meaningful feedback.

For the purpose of this thesis, the sensors are tied to the artifacts created by the learn-
ers and experts alike. The remainder of the thesis thus focuses on investigating and
developing machine learning models for Machine Teaching.

Machine Learning for Machine Teaching

The first step in this study is presented in Chapter 3, where a system is presented that
supports the learner with automated ratings of her web forum posts. These ratings are
computed based upon a machine learning model built from web forum posts that have
been rated by the users of that web forum. From a machine learning perspective, such
a system is built using state-of-the-art supervised machine learning methods.

The good results of machine learning on that task encourage the analysis performed
in the Chapters 4, 5 and 6 where detailed feedback in Machine Teaching is investigated.
There, the goal is to support the learner with feedback regarding her artifact instead of
merely rating it.

Chapter 4 presents a novel matrix factorization based machine learning model and al-
gorithm equally suited for this task and the more broadly known task of Recommender
Systems. The algorithm is evaluated in Chapter 5 on data sets from the recommender
systems literature with promising results.

In Chapter 6, this model and algorithm are applied to build a Detailed Feedback Ma-
chine Teaching approach for software engineers. Empirical evaluations show that the
system is indeed capable of supporting a software engineer with meaningful sugges-
tions.

Based on results presented in Chapter 6 and Chapter 3 it is safe to conclude that
machine learning can in fact be used to build Machine Teaching systems.

1.4 Contributions of this Thesis

This thesis investigates using machine learning to help convey implicit knowledge. It
thereby makes the following contributions to the state of the art in machine learning
and technology enhanced learning.

23

1 Introduction

Scientific Contributions

Machine Teaching Approach: This thesis presents a novel approach to technology en-
hanced learning that facilitates the transfer of implicit knowledge. The approach
takes into account different scenarios of general and detailed learner feedback.

Automatic Quality Assessment of Text: The ability to write appropriately for a com-
munity is a skill that cannot be transferred to explicit knowledge and thus is not
amenable to the traditional technology enhanced learning methodology. How-
ever, it is shown that the quality judgment of a community can be replicated by
a machine in order to facilitate the self-learning of this skill. This work has been
published in [WG07] and [WGM07]; the feature extraction software developed as
part of this has been described in [GMM+07].

A generalized Matrix Factorization Method: Many instances of the Machine Teaching
approach can be encoded into matrix factorization problems, much like recom-
mender systems. Where the latter suggest items to users, the former suggest ac-
tions to take or attributes of artifacts to be created. This thesis introduces a new
model and algorithm for this task and makes the following contributions to this
field:

1. A generalization of matrix factorization models to per-row loss functions
and

2. an optimization procedure to do so efficiently.

3. A procedure for the direct optimization of the Normalized Discounted Cu-
mulative Gain (NDCG) ranking score.

4. An algorithm for the computation of the ordinal regression loss inO (n log n)
time as opposed to the algorithms of O

(
n2) time complexity that have been

previously known in the literature.

5. An extension of the matrix factorization approach to hybrid recommenders
that can use features in addition to the user-item interaction data used in
collaborative filtering recommender systems.

6. Adaptive regularization for matrix factorization.

7. The integration of a graph kernel to model the binary interaction e.g. be-
tween users and movies in addition to the ratings provided by the users.

The algorithm has been evaluated on recommender systems data with favorable
results. The model, algorithm and extensions have been published in [WKLS08],
[WKS08b], [WKS08c] and [WKS08a]. The first version of the system with the
NDCG loss function was presented at NIPS 2007 under the name CofiRank in
the paper [WKLS08]. It was the first collaborative filtering system capable of pre-
dicting rankings as opposed to ratings and will be presented in the Preference
Learning book [KW10]. The recent paper [WKB09] at the ACM Recommender

24

1.4 Contributions of this Thesis

Systems Conference presents the results of the application of the Machine Teach-
ing approach to the software development domain.

A machine teaching approach for programming: Learning to program with a new code
library is a challenging task for software developers. It is shown that a code rec-
ommender system can be built for this task based on the matrix factorization al-
gorithm introduced above that is capable of easing this process.

Data and Software Contributions

During this thesis, the following additional contributions have been made to the scien-
tific community:

Software: An implementation of the matrix factorization algorithm in C++ has been
found to be one of the fastest available. It has been released as Open Source
Software and is available from the project website http://cofirank.org for
download.

Data Sets: Most of the experiments reported in this thesis were conducted on publicly
available data sets. Following this example, the data set used for the evaluation
in the software engineering application has been released on the project website,
too. The data set is described in detail in Section 6.4 and consists of caller-callee
relations mined from the Eclipse source code calling the SWT user interface frame-
work.

25

http://cofirank.org

2 The Machine Teaching Approach

Contents
2.1 Preliminaries: A Brief Introduction to Machine Learning 28

2.1.1 Machine Learning Problems . 28
2.1.2 Machine Learning Models . 30
2.1.3 Machine Learning Methods . 31
2.1.4 The Kernel Trick . 34

2.2 Introducing Machine Teaching . 35
2.2.1 Definition . 35
2.2.2 High-Level Example of a Machine Teaching Scenario 37
2.2.3 Machine Teaching Properties . 37
2.2.4 Machine Teaching Assumptions 39

2.3 Major Components of a Machine Teaching System 39
2.3.1 Dynamics of a Machine Teaching System 42
2.3.2 Focus of this Thesis . 44

2.4 General Feedback Machine Teaching 45
2.5 Detailed Feedback Machine Teaching 47
2.6 Conclusion . 51

27

2 The Machine Teaching Approach

The goal of this chapter is two-fold: First, MACHINE TEACHING is introduced as a
new technology enhanced learning approach which emphasizes on conveying prac-
ticed knowledge. Second, this chapter also presents the research focus of this thesis
within the broader approach of Machine Teaching.

The chapter is therefore structured as follows: Machine Learning is introduced in Sec-
tion 2.1 to facilitate the discussion in subsequent sections. Machine Teaching is then for-
mally defined and its properties are analyzed based upon that definition in Section 2.2.
The major components of a Machine Teaching system are described in Section 2.3, in-
cluding the relation between machine learning as an enabling technology and Machine
Teaching. The remainder of this chapter, namely the Sections 2.4 and 2.5, introduce
two levels of feedback a Machine Teaching system can provide, general and detailed
feedback.

2.1 Preliminaries: A Brief Introduction to Machine Learning

In this section, we present a brief overview of machine learning to facilitate further dis-
cussion of the Machine Teaching approach in subsequent parts of this thesis. Therefore,
it is decidedly high-level. For a more detailed description of machine learning see e. g.
the books [Bis06], [SS02], and [WF05].

Recall the definition of machine learning as introduced in Chapter 1:

Definition 3. A MACHINE LEARNING system builds models from data. The process of build-
ing these models is called (machine) learning or training. The data which is used in training is
therefore called TRAINING DATA.

Machine Learning as a field of research therefore concerns itself with the study of
problems to be addressed through machine learning, the development of machine learn-
ing models and methods to learn these models from data. Below, we will give a brief
overview of these aspects to machine learning.

2.1.1 Machine Learning Problems

Machine learning is applied to a wide range of problems where an explicit, hand coded
solution is hard or undesirable to obtain. This section provides a classification of the
major machine learning problems to show the breadth of the approach and therefore
hint towards the range of practiced knowledge it can be applied to in Machine Teaching.

The most basic categorization of machine learning problems in that of supervised vs.
unsupervised learning:

Supervised Learning: In this case, a model of an input – output relation is sought.
Given training data consisting of a set of pairs (xi, yi) of samples xi ∈ X and
their labels yi ∈ Y, a model is learned that can predict the label y j for a previously
unseen sample x j.

28

2.1 Preliminaries: A Brief Introduction to Machine Learning

An ubiquitous example of a supervised machine learning system is that of a email
spam filter: Given sufficient data about spam and ham (not spam) messages, a
model is sought to predict the label (spam or ham) for new email messages.

Unsupervised Learning: The goal of unsupervised learning systems is to uncover pat-
terns in raw data, e.g. by clustering the samples xi.

Unsupervised learning is often applied to data mining applications such as busi-
ness intelligence.

For the purpose of Machine Teaching, supervised learning settings are the more im-
portant ones, as we seek to apply the models to convey mined knowledge between
users while an unsupervised machine learning system is primarily used to deduce new
insights from data.

Machine learning approaches have been developed for a wide range of problems.
Some prominent examples shall be introduced below:

Regression: In this case, the labels yi are real numbers, yi ∈ R. Thus, the machine
learning system effectively learns a function f : X → R such that f (x j) is a pre-
diction of the true value of y j.

One Class Classification: All samples given to the system are proper examples. The
goal is then to build a model from these examples that is capable of identifying
samples that do not “fit in” with the standard set by these examples.

A typical application domain for one class classification arises as a machine learn-
ing problem is the detection of credit card fraud: The majority of the transactions
is assumed to be valid and one can therefore build a model from them. If a new
transaction is inexplicable through the model, it may raise concerns.

Classification: In this case, the labels yi are taken from a set of possible classes. In the
spam filter example, these classes would be Y = {SPAM, HAM}. The model
sought of a machine learning system in this case can be equated again to a func-
tion. The function value f (x j) is the predicted class of x j.

Ranking: In this problem, the goal is to rank items based upon ranked training sam-
ples. This problem is sometimes also referred to as ordinal classification or ordi-
nal regression, stemming from the fact that the ranking of the items is typically
expressed on a ordinal scale.

An obvious application of ranking systems are search engines which can be per-
sonalized by learning the ranking function for each user or group of users by
observing their past interactions with the search results.

Sequence Prediction: In many instances, the data consists of sequences, e. g. the se-
quence of web pages visited by a user. A model of such data can be used to
predict the likely next step, given the previous steps. Typically, Markov Models
are used in this context, where a Markov Model of order k uses the last k steps to
predict the next step in the sequence.

29

2 The Machine Teaching Approach

Recommender Systems: In this problem, the known data consists of past interactions
between users and items. The goal is to predict future interactions between yet
unseen user – item pairs.

Depending on the nature of the underlying data, these interactions can give rise to
any of the above problems. In shopping basket analysis, the recorded interactions
are binary: Whether or not an item has been bought by a user. In the movie
recommender systems scenario, the interactions are usually recorded as ratings
given on a discrete, ordinal scale.

Density Estimation: In many applications, one is interested in (conditional) probabili-
ties of variables within the data. Failure analysis of complex systems is a popular
example: The producer of e. g. a car is often interested in the relationship between
different sensory data about a car and the likely cause of a breakdown. Thus, the
probability of a breakdown given that sensory data is sought.

Each of these cases has possible applications in Machine Teaching: Regression and
Classification approaches can e. g. be used to model quality judgments to support
learners with an estimation of the quality of their work. See Section 2.4 below for more
details. Recommender systems and density estimation allow a Machine Teaching sys-
tem to build models of the detailed structure or properties of activities. These models
can then be used to support the learner with detailed feedback with respect to his work
as introduced in more detail below in Section 2.5.

2.1.2 Machine Learning Models

Above, we gave an introduction to some of the most important problems machine
learning is applied to. However, we did not introduce the actual models used for these
instances. To facilitate a concise, yet detailed discussion of important aspects of ML
models, we restrict ourselves to the example of linear models for binary classification
below. Much of the description also applies to other linear models such as those for
multi-class classification and regression. A more broad description of machine learning
models can be found in [Bis06].

Linear Models

Linear models in general assume the label y to be a linear function of the sample x.
The samples are represented by real valued feature vectors (X = Rn). The process of
turning samples into these vectors is called feature extraction: Each dimension of the
samples x refers to one feature (attribute) of the sample.

30

2.1 Preliminaries: A Brief Introduction to Machine Learning

Example 2. When dealing with text samples (documents), the so called bag of words is a basic
feature vector. For each document, a vector is constructed where each dimension represents the
number of times a certain word is present.

The text “This is an example within an example.” results in a feature vector where the value
in the dimensions for “This”, “is” and “within” is 1. The ones for “example” and “an” assume
the value of 2.

Given these feature vectors x, the model then consists of a weight vector of equal di-
mension, typically denoted by w ∈ Rn. In any linear model, the predicted label ypred

i
is then computed as a function h of the scalar (or inner) product between w and the
sample xi:

ypred
i = h (〈w, xi〉) = h

(
k=n

∑
k=1

wkxi,k

)

Linear Models for Binary Classification

In the case of binary classification problems, the labels y are encoded to be either 1 or
−1, that is Y = {+1,−1}. This allows us to define the function h from above to be the
sign of its argument:

sign (x) =

{
1 x >= 0
−1 else

Putting it all together, a linear model for binary classification consists of a weight
vector w that is applied to parametrize the prediction function f :

ypred
i = fw(xi) = sign (〈w, xi〉)

2.1.3 Machine Learning Methods

Until now, we did not introduce the process of actually finding the model, given train-
ing data. The techniques for this part of a machine learning system are referred to
as MACHINE LEARNING METHODS. Again, there are many options, even for the one
model and problem. We will thus introduce the general concept using the same exam-
ple as above, linear models for binary classification.

Training a machine learning model can be seen as picking the right function out of
a class of possible functions. Given the linear models above, that function class would
encompass all linear functions of the n features. And in that case, picking the right
function amounts to choosing the weights w as a linear function can be identified with
its weight vector.

To choose the “right” function, one needs to define the notion of “right” more for-
mally. The goal of a the training of a machine learning system is to obtain good perfor-
mance on yet unseen data, as measured by a LOSS FUNCTION l : Y×Y→ R. The loss

31

2 The Machine Teaching Approach

100 1 2 3 4 5 6 7 8 9

5

0

1

2

3

4

Feature 1

Fe
at

ur
e

2

100 1 2 3 4 5 6 7 8 9

5

0

1

2

3

4

Feature 1

Fe
at

ur
e

2

Figure 2.1: Underfitting: In the left graph with only one feature, the two classes cannot
be separated by a linear function. If another feature is added, as in the right
figure, that linear separator can be found as depicted.

function l determines the discrepancy between the predicted label f and its true value
y. Section 4.4 presents a number of loss functions in detail. For binary models, the loss
function shall indicate the errors made by the model:

l(f , y) =

{
1 sign(f) 6= sign(y)
0 sign(f) = sign(y)

Obviously, this future data is not available at training time. Hence, one resorts to
minimizing the loss on the available training data. This quantity is referred to as EM-
PIRICAL RISK and the process therefore as EMPIRICAL RISK MINIMIZATION. The Em-
pirical Risk of the model w is computed as the sum of the losses of the model on the
training data X:

Remp(w, X) = ∑
xinX

l(fw(x), y)

In the Empirical Risk Minimization, one faces the following two problems:

Underfitting: In this case, the model cannot capture the fidelity of the underlying data.
This often is the result of missing features in the data.

Example: Spam emails can partially be labeled based on the colors used in the
email (spam often uses red, while legitimate email doesn’t). If the colors used in
the text are not part of the features extracted, the machine learning model cannot
capture this information and will suffer from poor performance.

32

2.1 Preliminaries: A Brief Introduction to Machine Learning

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

Feature 1

Fe
at

ur
e

2

Future Data

Ove
rfi

ttin
g S

ep
ara

tor

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

Feature 1

Fe
at

ur
e

2

Future Data

Not Overfitting Separator

Figure 2.2: Overfitting: The separator function in the left graph does explain the train-
ing data perfectly well. However, it cannot generalize to the new data point
as opposed to the more simple separator depicted in the right graph.

Figure 2.1 depicts this situation with a one dimensional feature space (X = R)
where it’s impossible to find a linear function to separate the two classes. Adding
another feature (X = R2) can resolve this problem.

Overfitting: In this case, the model can encompass more complicated structures than
suggested by the data. This leads to the problem where the model explains the
training data perfectly, yet does not express the underlying structure properly.

Figure 2.1 visualizes this situation: The separator function on the right is simpler
than the one on the right: It separates the data using only Feature 2, as opposed
to using both features on the left hand side. It thus is capable of extracting the
true underlying structure better than the more complicated model on the left.

These problems are addressed differently for different models. We follow the REG-
ULARIZED EMPIRICAL RISK MINIMIZATION here, which introduces the following two
steps to counter them: First, a sufficiently large model class is used such that a solution
can always be found, e. g. through the Kernel Trick introduced below in Section 2.1.4.
This eliminates the risk of underfitting. Second, a REGULARIZER Ω is introduced that
measures the model complexity.

Many choices of the regularizer are conceivable. For the sake of concise presentation,
we restrict ourselves to the squared L2 norm (Euclidean norm) here:

Ω (w) = ||w||22 =
1
2

i=n

∑
i=1

w2
i

33

2 The Machine Teaching Approach

Optimization

The training process of a machine learning model is an optimization problem: The empir-
ical risk as well as the regularizer are minimized in a joint objective function:

O(w, X) = Remp (w, X) + λ Ω (w) (2.1)

= Remp (w, X) +
λ

2

i=n

∑
i=1

w2
i (2.2)

Here, λ is a constant that defines the relative trade-off between the model complexity
and the loss on the training data. An intuitive explanation of this observation can be
given as follows: A model is sought which agrees with the observed training data as
much as possible (as measured through the empirical risk), but which on the other hand
is as simple as possible (as measured through the regularizer). This follows OCCAM’S

RAZOR which states that the simplest explanation that agrees with reality is the most
likely one.

The result of the minimization is the model ŵ which minimizes the objective function
O(w, X):

ŵ = argminw (O (w, X)) (2.3)
= argminw

(
Remp (w, X) + λ Ω (w)

)
(2.4)

To facilitate efficient optimization, the loss function is (re-)formulated as a convex
function in the prediction f to facilitate efficient optimization. If the loss function is
convex in the prediction f , it is also convex in w for linear models. As the L2 norm
is convex in w, too, the whole training process then amounts to minimizing a convex
function to find the model w which minimized the objective function (2.1).

In the binary classification case, the loss function is typically formulated as the HINGE

LOSS:

lHinge (f , y) = max (0, 1− f y)
This loss vanishes if the prediction f and the truth y agree. Additionally, the Hinge

Loss is a linear and therefore convex function in f . See Section 4.4.1 for a detailed
description of the hinge loss. In Section 4.4 within the same Chapter, more examples of
loss functions are given, in particular for regression and ranking problems.

Given a convex loss function, the process of training the machine learning model
has therefore been identified with that of optimizing a convex function. Numerous
algorithms are available for this task.

2.1.4 The Kernel Trick

The linear models above are of rather limiting expressiveness: If the data can only be
linearly separated based upon the joint observation of two or more features, no linear
model can be found that separates the data.

34

2.2 Introducing Machine Teaching

To heal this, one would have to define an additional feature that encodes the co-
occurrence of the two other features to make the data linearly separable. The feature
engineering therefore encodes non-linear features of the domain into dimensions of the
feature space to facilitate a linear model. This obviously is undesirable as it introduces
a huge number of features of questionable relevance.

The concept of a kernel based algorithm as described e. g. in [SS02, Vap95, VGS97,
Vap98] generalizes this idea to effectively turn most linear models to non-linear models.
The process is commonly referred to as the KERNEL TRICK. To apply it to a linear
model, one follows these steps:

1. One needs a formulation of the prediction rule as well as the optimization algo-
rithm that does not operate on the samples x directly, but instead only uses inner
products

〈
xi, x j

〉
between samples.

The inner products can be regarded as a measure of similarity between the sam-
ples. Example: Let xi and x j be bag-of-words representations of texts as in the
example above. The inner product

〈
xi, x j

〉
then increases if xi and x j share more

words. It assumes the value of 0 if the texts do not share any word.

2. The invocation of the inner products
〈

xi, x j
〉

are then replaced with those of a
KERNEL FUNCTION k(xi, x j). This function gives rise to a gram matrix Ki, j =
k
(
xi, x j

)
. If that matrix is positive semi-definite

(
xKx> ≥ 0 ∀x ∈ Rn), it can be

shown that the kernelized algorithm can be equated to a linear algorithm operat-
ing in a space induced by that kernel.

The net effect of the application of this trick is: Many models that are linear in the
samples x can be transformed into models that are not linear in these samples. Thus,
the trick has been applied to a wide variety of models to broaden their applicability.
Major implementations can e. g. be found in the software package kernlab [KSH09,
KSHZ04].

2.2 Introducing Machine Teaching

Building upon the general idea introduced in Chapter 1, Machine Teaching in the broad-
est sense shall be defined as follows:

2.2.1 Definition

Definition 4 (Machine Teaching). MACHINE TEACHING conveys PRACTICED KNOWL-
EDGE through machine learning models built from observational data of the application of that
knowledge.

It follows immediately from this definition that any machine learning model and
method can be applied to in this sense. Consider the following hypothetical examples
of Machine Teaching applications:

35

2 The Machine Teaching Approach

Craft: A sequence prediction model can be built from observing experienced crafts-
men. That model contains the knowledge about work sequences and can be ap-
plied to support other craftsmen by providing hints on possible “next steps” in
their work.

Photography: Given the exposure data and e. g. light sensor input of a corpus of im-
ages, a regression model can be trained to reflect the common exposure settings
used in certain light.

Writing in Novel Text Genres: Many genres of text found e. g. in communities on the
world wide web expose new styles of writing, spelling and even grammar. A ma-
chine learned structure model of this grammar can be applied to support people
new to the community in writing for it.

Machine Programming: Many machines nowadays are controlled by computers and
are therefore programmed for each product. Creating these programs requires
skill, experience and intuition. The performance of the programs is, however,
rather explicit: The time it takes to produce the desired product, the amount of
wear and tear the production induced, etc. A machine learning model of these
programs can be used to support new programmers and to foster the reuse of
knowledge from successful programs.

These examples show how broad the applicability of the approach is. In this thesis,
we focus on a subset of the possible applications where the machine learning model is
used to provide feedback to the learner in a way similar to the master in an apprentice-
ship or master-student situation:

Definition 5 (Apprenticeship Machine Teaching). An APPRENTICESHIP MACHINE

TEACHING system supports learners during activities by providing ratings of and / or sugges-
tions regarding these activities. It follows the concept of an apprenticeship where the apprentice
is offered ratings of and / or suggestions regarding her work from one or several experienced
practitioners.

To provide these ratings and suggestions, a Machine Teaching system needs a machine
model of the activity in question which captures the knowledge needed for this activity. The
models are extracted from past observations of the same or similar activities by more experienced
people by means of machine learning.

Based upon these models and observational data about the activity of a learner, the Machine
Teaching system generates ratings and / or suggestions and presents them to this learner.

Note that the term learning is overloaded in this thesis. It may either refer to the
human learning or to the learning in the machine learning sense. Thus, we define:

36

2.2 Introducing Machine Teaching

Definition 6 (Learning). To distinguish between the two meanings of learning, we use the
following terms wherever the meaning is not clear from the context:

Learning denotes the learning of the humans, frequently called learners.

Machine Learning denotes the model building through a machine learning algorithm.

The same nomenclature is applied to the verb “to learn”, where we introduce the form “to ma-
chine learn”.

2.2.2 High-Level Example of a Machine Teaching Scenario

Consider the following example taken from Chapter 6 to illustrate the idea of Machine
Teaching:

Many of the practices in a team of programmers are never written down. Assume
that the practices include:

Whenever something is written to the database, we put an entry to the log
file starting with “Database Access:”.

A programmer new to the team will most probably hear about this practice once
she fails to adhere to it: The fellow programmers will point out that mistake and the
programmer will adhere to this practice in the future.

The latter process, pointing out the error, is where Machine Teaching is introduced:
Given enough code, a model of that code can be machine learned. This model en-
compasses the practice quoted above. Then, by observation of the code of the new
programmer, the system can point out instances where the code does not match the
machine learned model and thereby the practices formed by the team.

In this process, the Machine Teaching system assumes the role of the fellow program-
mers in the current process. It is also apparent that the Machine Teaching system does
not require the programming team to define or otherwise externalize their practices.
Nor do the programmers have to provide the system with “model code” to learn from.
Instead, the Machine Teaching system analyzed the code they already produced. This
significantly lowers the effort needed to deploy this Machine Teaching system when
compared to a more traditional technology enhanced learning system.

2.2.3 Machine Teaching Properties

Now that Machine Teaching has been defined, this and the following section provide
an analysis of the approach which follows from these definitions. In this section, the
properties of such a system are discussed, also contrasting them to those of a tradi-
tional technology enhanced learning system. The section thereafter will explicate the
assumptions regarding the learner and the scenario that underlie the Machine Teaching
definition above.

It immediately follows from its definition that a Machine Teaching system is not de-
pendent on externalized knowledge. The following paragraphs will introduce and discuss

37

2 The Machine Teaching Approach

additional important properties of any Machine Teaching system that falls within the
scope of the definition above, while subsequent sections give insights on more specific
instances of Machine Teaching systems.

Machine Teaching can operate on non standardized knowledge: Machine Teaching ex-
tracts the model from observational data. Thus, the knowledge that is needed to
perform the observed activities needs not to be standardized. Depending on the
machine learning model used and the amount of data available, even conflicting
observations can be co-existing in a Machine Teaching system.

Machine Teaching is focused on the practice, not the ideal: A Machine Teaching system
operates on observations of activities and therefore has no access to the ideal way
of performing these activities. Such an ideal view would typically be found in
traditional teaching materials such as textbooks and instructional videos.

Thus, a Machine Teaching system captures and subsequently teaches a different
quality of the activities when compared to traditional learning material: How
they are done as opposed to how they should be done.

Machine Teaching is geared towards long-time use: Typical technology enhanced learn-
ing tools such as an online course are focused on teaching the needed knowledge
in a comparatively short period of time. Machine Teaching, on the other hand, is
more suitable in a long term setting: It provides feedback to the learner based on
her activities. As these change over time, a Machine Teaching system can accom-
pany the learner through different learning tasks, possibly even with an ambient
learning setting.

Depending on the use of a Machine Teaching system, it may constantly machine
learn by updating its model to the observed practices, too. Thus, not only the
human learning is long-term, the machine learning is, too.

A Machine Teaching system makes mistakes: Even if the used machine learning mod-
els capture the observed activities perfectly and make no mistakes (an unlikely
condition), these activities need not be executed perfectly at all. Thus, mistakes
of a Machine Teaching system are to be expected just as mistakes of the humans
observed are to be expected, too.

However, these mistakes do not inhibit learning: The Machine Teaching system
makes these mistakes based upon vast amounts of observations of past activities.
Therefore, even if the Machine Teaching system makes an objectively false sug-
gestion, it may still provide the learner with the information that her current ac-
tivity is different from the mainstream as extracted from these observations. That
information alone can therefore trigger important reflections within the learner.

Given these properties, it becomes apparent that Machine Teaching not only does
away with the dependence on externalized, possibly structured knowledge but also
exhibits teaching qualities which are new to the field of technology enhanced learning,
such as being more suitable to teaching the practice as opposed to the ideal.

38

2.3 Major Components of a Machine Teaching System

It also became clear from this analysis that the performance of any future Machine
Teaching system is crucially dependent on the quality of the available machine learning
models and methods.

2.2.4 Machine Teaching Assumptions

In addition to these attributes of a Machine Teaching system, its definition also exhibits
certain assumptions regarding its applicability:

Data availability: Departing from traditional technology enhanced learning, Machine
Teaching does not require externalized or even formalized knowledge. Instead,
it requires observational data to build its machine model. Thus, it can only be
applied to domains where that data is available or can be gathered easily.

Availability of suitable machine learning techniques: As Machine Teaching relies on ma-
chine learning models and methods at its core, only practiced knowledge that
can be represented in those models can be conveyed through Machine Teaching
system. However, any advance in the breadth and depth of available machine
learning techniques also adds new potential to the Machine Teaching approach.

Example: Machine translation is one active field of research in machine learn-
ing. However, the techniques to machine learn to translate texts from pairs of
translated texts have not matured enough to be considered for a Machine Teach-
ing system. Once substantial progress is made in this field, a Machine Teaching
system could be built that supports the education of human translators.

Learner Experience: An Apprenticeship Machine Teaching system provides ratings of
and / or suggestions regarding activities of the learner as observed by the system.
It follows immediately that the learner needs to be capable at least of an attempt
of the said activity. Otherwise, the Machine Teaching system will be unable to
provide meaningful feedback. Thus, the learners who use a Machine Teaching
system cannot be complete novices of the field.

Situations where observational data is easily available and where learners have at
least minimal experience are plentiful, especially in the envisioned long-term usage
scenarios.

2.3 Major Components of a Machine Teaching System

Departing from the rather abstract level of the definition and theoretical analysis of
Machine Teaching, a more systems-oriented perspective is taken in this section. The
following introduces the major components of a concrete Machine Teaching system and
their relations. This will not only facilitate a more detailed discussion in the remainder
of this chapter but also provide the basis for an analysis of the research needed in order
to make Machine Teaching feasible.

39

2 The Machine Teaching Approach

Model
Application

Machine
Learning
Method

Feedback
Presentation

Experts
performing
an activity

Learner
performing
an activity

Training
of the Machine Teaching System

Application
of the Machine Teaching System

Legend:

: Sensors

Feedback

Machine Model

Figure 2.3: Major components of a Machine Teaching system. Note that the distinction
of users into Experts and Learners is introduced for clarity of presentation
only.

40

2.3 Major Components of a Machine Teaching System

Here, the components of a Machine Teaching system are introduced in two steps:
First, they are described by themselves. Second, their dynamic interplay will be dis-
cussed. Figure 2.3 shows the major components of a Machine Teaching system:

The Experts: These are the people that are observed by the system in order to machine
learn a model of the activity observed. The assumption regarding the experts is
that they perform the observed activity well enough to serve as an example for
the learner.

How to choose these experts in an application of Machine Teaching is specific to
that application. In the software engineering example above, the experts are the
fellow programming team members of the learner as they have expert knowledge
on the practices established by that team.

The Learner: As introduced above, the learner is able to perform the activity to some
extent, but requests or is presented assistance regarding her current activity. Thus,
the learner may either be in an active role with respect to the Machine Teaching
system or in the role of a consumer.

Note regarding these roles: Note that these two roles – experts and learners – are
not mutually exclusive. In fact, a learner may very well contribute to the system as an
expert, too. This may either be the case if the users of the system are experts in one part
of the practiced knowledge and learners in another. Or, more interestingly, the Machine
Teaching system could be used to accelerate consent-finding within a group of peers:
All activities of all users contribute to the machine model of the practiced knowledge.
And all users receive feedback from the system based upon that model which will yield
consensual behavior of the users group.

The Sensors: Both the experts and the learner are monitored through these in order to
provide the Machine Teaching system with the observational data. The sensors
need to be able to capture those attributes of the activity needed to perform the
kind of assistance sought of the Machine Teaching system. While the sensors
externalize data about the activity, this data hardly resembles knowledge.

Note that the sensors need not to be physical: In the Software Engineering exam-
ple above, the sensors are formed by code analysis software.

The Machine Learning Method and Model: These two components are inter-dependent
and thus are presented together. Given the sensor input, the machine learning
method is used to learn the machine learning model. A chosen machine learning
model can only be machine learned by a certain set of machine learning methods,
hence the interdependence between the two.

The machine learning model (or machine model) is in principle chosen separately
for each application of Machine Teaching. However, we will introduce two major
classes of Machine Teaching scenarios below, namely general and detailed feed-
back, as well as appropriate machine model choices for both of them.

41

2 The Machine Teaching Approach

WorldDom.javaTest.javaDB.java

Editor

Others called log() in similar situations

Figure 2.4: Mockup of the user interface of a Machine Teaching System for program-
mers.

Machine Teaching and machine learning are connected, as the abilities of the ma-
chine learning method and model define the abilities of a Machine Teaching sys-
tem. Any progress made regarding the accuracy, speed and expressive power of
the underlying machine learning techniques directly reflects upon the same prop-
erties of Machine Teaching approaches built upon these techniques.

The Feedback Generation Module: In this module, the observational data of the learner’s
activity is analyzed in order to provide ratings of and/or suggestions regarding
this activity. This module can be thought of as a two layered system:

The lower level consists of the application logic of the machine learning model to
new data. This level gets the sensor data as input and provides the higher level
with its output, namely predicted rating of and / or suggestions regarding the
observed activity.

The higher level is responsible of presenting this information to the user. In the
software development example above, this could e. g. happen through a subtle
hint as envisioned in Figure 2.4.

After describing the components of a Machine Teaching system, the following will
introduce the dynamic interplay of these components.

2.3.1 Dynamics of a Machine Teaching System

There are two phases to be considered in the analysis of the dynamics of a Machine
Teaching system: The training phase and the application phase.

42

2.3 Major Components of a Machine Teaching System

Training Phase

In this phase, the system is presented observational data to machine learn a model of
these observations. To do so, the sensory input first needs to be made accessible to the
underlying machine learning model and method. Subsequently, the actual training of
the machine learning model through the machine learning method can occur, either in
what is called offline or online learning:

Depending on the nature of the application of Machine Teaching, the observational
data may either be available as one batch to train the system or arrive as a constant
stream of data. The first case is called offline or batch learning in the machine learning
literature. The second case refers to online learning, which makes it possible for the
system to constantly update its model upon the arrival of new data.

Obviously, the feedback generated by the Machine Teaching system cannot be en-
sured to be constant and therefore predictable by the learner in the online learning
case. In fact, the system may very well contradict itself after machine learning from
new data. These inconsistencies could inhibit the learning process. On the other hand,
an online method facilitates a more current tracking of the practices observed by the
Machine Teaching system which would lead to fewer inconsistencies between the feed-
back provided by the Machine Teaching system to the learner and her observation of
the practices of experts. Thus, the designer of a specific Machine Teaching system faces
a trade-off between constant, predictable feedback and current feedback.

Application Phase

In this phase, the Machine Teaching system is presented observational data of the
learner’s activity and is sought to provide suggestions regarding and/or ratings of this
activity. This can be thought of as a two-step process:

1. Potential feedback is derived from the machine learning model.

2. This feedback is presented to the learner.

The first step is again dependent upon the chosen machine learning model. But in
addition to this dependence, it also poses new requirements above the mere application
of a machine learned model to new data: The learner needs instantaneous feedback
while in many other applications of machine learning, the results of the application of
the model can be precomputed.

The second step does in principle not differ from the same step in a system where
the feedback is not build upon machine learned models, but upon formalized knowl-
edge embodied in the system. Example: In the software engineering example, it does
not matter to the presentation layer whether the desired co-occurrence of logging and
database access is machine learned from data or hand coded as rules.

Performance of a Machine Teaching system: It became apparent not only from the
systems-oriented view above but also from the analysis provided earlier in this chapter

43

2 The Machine Teaching Approach

that the performance of a Machine Teaching system is largely determined by the per-
formance of the machine learning method and model that supports it. All other factors
such as user interface, data availability etc. being equal, a machine learning method
yielding higher accuracy, less error or better predictions in general will also yield a
more satisfying Machine Teaching performance. Therefore, it is prudent to evaluate
machine learning models in Machine Teaching using the same or very similar tech-
niques to those used in other machine learning applications.

2.3.2 Focus of this Thesis

So far, we have introduced Machine Teaching as a new approach to technology en-
hanced learning. The remainder of this thesis presents a first step in investigating this
new approach by studying its feasibility from a technological point of view.

To do so, we restrict ourselves to a critical set of components of a Machine Teaching
system to study: We use the artifacts created by learners and experts as sensors and
omit the feedback presentation layer from the analysis in the remainder of this thesis.
The main research question in this thesis then is whether suitable machine learning
models can be found or developed to support Machine Teaching systems in the future.
The following paragraphs present the reasons for these choices.

Presentation of the feedback

The only component introduced above which is not discussed below is the presentation
of the feedback to the learner. As mentioned earlier, this component does not differ
significantly from the very same component in systems where the suggestions given
by the system are hand-coded. Thus, it is safe to assume that such a module is easily
devised for a concrete Machine Teaching system.

The Sensors

For the purpose of this thesis, the sensors shall monitor the activities of users, learn-
ers and experts alike, through their artifacts. While other sensor setups that monitor
processes are conceivable, they also introduce severe challenges of their own that dis-
tract from the research challenges of Machine Teaching addressed in this thesis. The
technology to reliably monitor human actions and correctly label those observations
with activities is still in the realm of research itself, dealing with challenges in sensor
technology, ambiguity in human action and not the least privacy concerns of the users.
See e. g. [BMRC09] for an approach to classify group activities and e. g. [ZWS09] for an
approach to classify the activity of a single user based on sensors worn by that user.

Using artifacts to monitor the users does not suffer these drawbacks. For many
decades, whole areas of computer science such as computer vision, natural language
processing and speech analysis are devoted to the analysis of artifacts. Thus, a Machine
Teaching system can tap into the results of these fields as a resource for the analysis of
the artifacts.

44

2.4 General Feedback Machine Teaching

Many artifacts are created to serve a purpose. This also means that the extent to
which they serve this purpose, their quality, can be used as a factor to choose the arti-
facts to train the Machine Teaching System on.

Additionally, artifacts can serve as an anchor in a multi-disciplinary collaboration:
When people from different disciplines of expertise contribute to an artifact, the arti-
fact and therefore the model machine learned from it contains representations of the
knowledge from all these people and their respective disciplines. If that model is then
applied to a situation where one or more of the disciplines are missing, the model can
provide important pointers to knowledge from other fields.

Machine Learning Method and Model

The main open question in studying the feasibility of Machine Teaching is whether or
not a machine learning model can capture the knowledge embodied in the artifacts.
Following the task of a Machine Teaching system as defined above, we distinguish
two levels of Machine Teaching: General Feedback Machine Teaching which aims at
providing grade-like ratings of the artifact and Detailed Feedback Machine Teaching
which aims at providing suggestions regarding the artifacts.

The separation not only follows the two tasks of a Machine Teaching system, it is also
justified from the state-of-the art of machine learning. As we will show below, general
feedback can be devised using state-of-the-art machine learning techniques while the
provision of detailed feedback is more of a challenge to that field. Thus, general feed-
back can serve as a testbed for Machine Teaching while detailed feedback needs further
research regarding the machine learning techniques used.

The following two sections will describe these two levels of feedback in Machine
Teaching in detail, including appropriate machine learning methods and models. Both
of these sections conclude with the identified research questions in there respective area
to form the agenda of the remainder of this thesis.

2.4 General Feedback Machine Teaching

Closely following the definition of Machine Teaching, General Feedback Machine Teach-
ing is defined as:

Definition 7 (General Feedback Machine Teaching). A GENERAL FEEDBACK MACHINE

TEACHING system provides the learner with “grade-like” numerical ratings of her artifact.
To provide these ratings, a General Feedback Machine Teaching system extracts a model of the
ratings from similar artifacts rated by humans. Based upon this model and the artifact presented
to the system by the learner, the General Feedback Machine Teaching system generates ratings
and presents them to the learner.

It is important to note the difference between a system matching this definition and
already known systems: Computers have long been capable of rating artifacts, e. g.
by matching them against a fixed set of rules. The spell checking facility found in

45

2 The Machine Teaching Approach

just about any modern desktop application is a good example of such a system. Ma-
chine Teaching differs from these systems, as the rating computed is no longer based
on knowledge embodied in the system, but on models machine learned from rated
artifacts.

Appropriate Machine Learning Models

In this section, we identify machine learning technology needed to build a General
Feedback Machine Teaching system. From a machine learning perspective, the goal of
a General Feedback Machine Teaching system can be rephrased as: Given a set of rated
artifacts, find a model that is capable of predicting the rating for a yet unseen, unrated
artifact.

This is virtually identical to the task of supervised machine learning systems as intro-
duced above in Section 2.1. Depending on the type of the ratings, different approaches
such as classification or regression are appropriate.

Feature Engineering

Supervised machine learning approaches need a digital representation (denoted by x in
the definition above) of the artifacts. Typically, FEATURE VECTORS are used: One vector
represents one artifact. Each dimension of the vector refers to one feature (property,
attribute) of the artifact and contains the value of that feature for this artifact.

Consider the following example from the field of Natural Language Processing (NLP):

Example 3. When dealing with text, the so called bag of words is a commonly used feature
vector. For each document, a vector is constructed where each dimension represents the number
of times a certain word is present.

The text “This is an example within an example.” results in a feature vector where the value
in the dimensions for “This”, “is” and “within” is 1. The ones for “example” and “an” assume
the value of 2.

The process of determining the feature values for an artifact is called FEATURE EX-
TRACTION, while FEATURE ENGINEERING refers to the finding, development and def-
inition of the features. Much research in fields such as Natural Language Processing
and Computer Vision resulted in a multitude of available features in their respective
domains.

Key to the prediction performance of a supervised machine learning system and
therefore a General Feedback Machine Teaching system is to find appropriate features
of the artifacts. In the worst case, where there is no relation between the artifact features
extracted and its label, a supervised machine learning system cannot find a function to
compute the label from these features.

46

2.5 Detailed Feedback Machine Teaching

Research Questions

It also follows that the appropriateness of a feature is task-dependent: A feature that
is very successful in systems for one task does not necessarily perform equally well in
systems built for other tasks.

As General Feedback Machine Teaching is a new task from the perspective of super-
vised machine learning, the main research question can be phrased as:

Can features be found that allow a supervised machine learning system to
be part of a General Feedback Machine Teaching system?

This question is addressed via an example in Chapter 3. In that Chapter, features are
proposed and evaluated for the task of estimating the rating of web forum posts. It will
be shown that features in fact can be found for this task.

To conclude, General Feedback Machine Teaching systems can be built and thus it is
prudent to discuss the more ambitious goal of providing the learner with suggestions
regarding her artifact through a Detailed Feedback Machine Teaching system.

2.5 Detailed Feedback Machine Teaching

Again, we start the description of Detailed Feedback Machine Teaching with its defini-
tion, closely following that of Machine Teaching in general:

Definition 8 (Machine Teaching). A DETAILED FEEDBACK MACHINE TEACHING system
supports learners in the creation of artifacts by providing suggestions regarding these artifacts.

To provide these suggestions, a Detailed Feedback Machine Teaching system needs a ma-
chine model of the artifact in question which captures structure of the kind of artifact in ques-
tion. These models are extracted from similar artifacts created by more experienced people by
means of machine learning.

Based upon these models and the artifact presented to the system by the learner, the Machine
Teaching system generates suggestions and presents them to this learner.

The remainder of this section discusses the possible choices regarding a machine
learning model for this task. We will thereby identify open research questions that
are summarized at the end of this section.

Machine Learning Models

To provide suggestions regarding an artifact, a Detailed Feedback Machine Teaching
system needs a grasp of the artifact’s structure. Similarly to the artifact features intro-
duced above, this structure of the artifact is represented by structural elements of the
artifact, which we define as:

47

2 The Machine Teaching Approach

Definition 9 (Structural Element). A STRUCTURAL ELEMENT of an artifact is a feature of
the artifact that is mutable by the user, respectively learner of the system.

Structural elements are typed just as features are. Common types include binary, real
valued and one-out-of-n.

One artifact may be represented by a vector x of these structural elements, where each
dimension corresponds to one structural element. The value of the vector of one artifact in
that dimension is the value of the structural element. As an artifact is not required to have all
structural elements, the vector may be sparse.

The goal of Detailed Feedback Machine Teaching can then be stated as: Given the
structural elements of an artifact, suggest changes to the values of these or additional
structural elements. Thus, the main difference to the goal of General Feedback Machine
Teaching from a machine learning perspective is that instead of predicting a label y for
a given sample x, the system is now asked to predict changes to the sample x.

In contrast to General Feedback Machine Teaching, this task does not map directly to
one specific machine learning technique. In fact, one could design a statistical model
for each artifact type and fit that model to the available data in principle. Graphical
models as introduced e. g. in [Bis06] (Chapter 8) provide the conceptual framework to
build these models and henceforth machine learning algorithms for them.

The Connection to Recommender Systems

While the task of designing a model for each artifact type seems daunting, the following
observation allows us to provide a machine learning model in a large set of Detailed
Feedback Machine Teaching settings:

Observation: The process of suggesting (values of) structural elements of
artifacts is strikingly similar to that of suggesting products or services to
users in a Recommender System.

Recommender Systems are the enabling technology for many e-commerce vendors
and have found great research interest. The term “Recommender System” is often only
implicitly defined. For the sake of precision, the term shall be defined as follows for the
remainder of this thesis:

Definition 10 (Recommender System). A RECOMMENDER SYSTEM suggests items to
users. The goal is to suggest those items to a user she is likely to like.

The recommendations are based upon available data about the user and the items, including
interaction data between the users and items, e. g. in the form of user-supplied ratings.

In most cases, a recommendation is computed by first estimating the preference of the user
for the items and then presenting those with the highest estimates to the user. This core predic-
tion logic of the system shall be referred to as RECOMMENDER ALGORITHM.

Following this definition, the observation above allows us to define Recommender
based Machine teaching as:

48

2.5 Detailed Feedback Machine Teaching

Definition 11 (Recommender based Machine Teaching System). A RECOMMENDER

BASED MACHINE TEACHING SYSTEM suggests values of structural elements for artifacts.
The goal is to suggest those values that fit the artifact well.

The suggestions are based upon available data about the structural elements and the arti-
facts, including in particular similar artifacts as represented by their structural elements.

Requirements of a Recommender System

Despite this striking similarity, a Recommender based Machine Teaching system poses
a specific set of requirements on the underlying recommender algorithm:

R1: Accurate solutions for partial artifacts: In its application, the Machine Teaching
system needs to suggest values for structure elements based on partial artifacts
as it is to support the learner during the creation of the artifact. Every time the
learner changes the artifact in ways that alter the structural elements, the system
needs to compute new or adapted recommendations.

This is similar to the “new user” problem discussed in the Recommender Systems
literature: A new user who has rated just a few items expects meaningful sugges-
tions from the recommender system. The presence of new artifacts in this sense is
the norm in Machine Teaching scenarios, while it is the exception in a eCommerce
recommender system.

R2: Interactive Performance: The Machine Teaching System shall be deployed such
that it can provide accurate suggestions just-in-time: The Machine Teaching sys-
tem must keep up with the speed the learner manipulates the artifact or, at least,
the rate at which she demands suggestions from the system.

This is often less of a concern for commercial recommender systems, as the rate at
which people buy items is considerably lower than the rate at which learners can
manipulate artifacts.

R3: Recommendation Coherence: The recommendations given by the Machine Teach-
ing System may be subject to coherence restrictions such as in the following ex-
ample:

Example 4. In the programming example in Section 2.2.2, the system should only recommend
an operation on a String object if an object of that type is either present or its creation is also
suggested.

Note that coherence requirements may be formalized in some cases, while in the
more general case they are to be inferred from the data.

R4: Easy Adaptation to Multiple types of prediction: The structure elements of arti-
facts may be of various types. Thus, the Machine Teaching System needs to be
easily adaptable to these changing types. Recommender algorithms, in contrast,
are most often developed solely to predict the numerical rating a user would at-
tach to a given item.

49

2 The Machine Teaching Approach

Available Recommender Algorithms

The Recommender Systems literature, e. g. in the survey paper [AT05] distinguishes
two different approaches: Memory based Recommender Systems and Model based
Recommender Systems.

Memory based Recommender Systems:1 To compute the predicted ratings, these sys-
tems search for the users which are most similar to the one the prediction is made
for. The notion of similarity can be based on features as defined above, e. g. their
age or address, or it is based on past purchase data. Given those similar users, the
predictions is computed as the, potentially weighted, average of the labels given
to the item in question by those users.

The same approach can be applied from an item perspective: A list of items is
retrieved that are similar to the one in question. The weighted average over the
labels “given” to the user in question is the prediction of the system.

Model based Recommender Systems: Given past data, these systems build a model of
the function that associates a user-item pair with a label. One approach to do so
is to derive a function from the features of the users and items to the label. As
for Memory based Recommender Systems, the model may also be defined on the
past purchase data of this and other users. Systems in that category are referred
to as Collaborative Filtering Systems. Systems that make use of both user and item
features and the collaborative information are referred to as Hybrid Recommender
Systems.

We will now investigate the suitability of these classes of Recommender Systems in
the light of the requirements described above.

Memory based recommender systems need to perform a search for similar artifacts
whenever the learner requests assistance. In the desirable case where the Machine
Teaching system can draw upon a large database of artifacts, this search considerably
limits the real time applicability of the system, violating requirement R2. We therefore
exclude memory based recommender systems from further analysis.

As stated in R1, a Machine Teaching System is frequently faced with new artifacts.
These artifacts have only very few values for their structural elements and therefore
provide little input to the recommender system to build its recommendation upon. It
is thus desirable to use a hybrid recommender system which is capable of using addi-
tional features of the artifact and the structural element to enhance its prediction accu-
racy.

Remaining Research Questions

However, to the best of our knowledge there is no model based hybrid recommender
system that meets all of the requirements above. In Chapter 4, we present a novel
recommender algorithm that meets these requirements. The application of this new
algorithm to a Detailed Feedback Machine Teaching System for Software Engineers is
subsequently presented in Chapter 6.

50

2.6 Conclusion

2.6 Conclusion

In this chapter, we introduced Machine Teaching as a new approach to Technology En-
hanced Learning in which the knowledge formalization and externalization required in
traditional Technology Enhanced Learning approaches is replaced with machine learn-
ing: A machine learning model is built from observation of experts which is henceforth
used to provide feedback to learners.

An analysis of the major components of a hypothetical Machine Teaching system
allowed us to determine a critical set of components needed to build such a system.
This critical set of components and therefore the feasibility of a Machine Teaching is
studied in the remainder of this thesis from a technical perspective.

The remainder of this chapter presented two sub-categories of Machine Teaching sys-
tems: Those providing a grade-like rating to the learner and those aiming at giving sug-
gestions regarding the learner activity. The reason for this distinction lies not only in the
task but also, as we have shown, in the available machine learning techniques: General
feedback can be provided by supervised machine learning techniques, given suitable
features of the artifact. Detailed feedback, however, in principle requires specialized
machine learning models for each Machine Teaching task. But as we have shown, a
large subset of these tasks can be tackled using enhanced Recommender Systems tech-
nology.

Next steps in this thesis: The remainder of this thesis is structured based upon this
observation: In Chapter 3, we present a application of supervised machine learning to
the Machine Teaching task of rating web forum posts. Based upon the encouraging
results on this task, the Chapters 4 and 5 introduce a recommender systems model and
algorithm capable of meeting the Machine Teaching requirements outlined above. This
model and algorithm are then evaluated in the Machine Teaching task of providing
software engineers with detailed feedback in Chapter 6.

51

3 General Feedback Machine Teaching for Web
Forum Authors

Contents
3.1 Introduction . 54

3.1.1 Example domain . 54
3.2 State of the Art . 55

3.2.1 Automatic Essay Scoring . 56
3.2.2 Data Characteristics . 56
3.2.3 Feature Inspirations . 56

3.3 Feature Engineering . 57
3.3.1 Surface Features . 58
3.3.2 Lexical Features . 58
3.3.3 Syntactic Features . 59
3.3.4 Forum Specific Features . 59
3.3.5 Similarity features . 59

3.4 Evaluation Procedure . 60
3.4.1 Data Set and Pre-processing . 60
3.4.2 Method . 61

3.5 Evaluation Results and Discussion . 62
3.5.1 Results . 62
3.5.2 Performance Analysis . 63

3.6 Conclusion . 68

53

3 General Feedback Machine Teaching for Web Forum Authors

3.1 Introduction

In this chapter, the computational elements of a General Feedback Machine Teaching
approach are implemented and evaluated. The goal of a General Feedback Machine
Teaching system is to provide the learner with “grade-like” ratings of her activity. As
introduced earlier, we focus on observing the learner and the experts alike through their
artifacts.

From a machine learning point of view, General Feedback Machine Teaching is an
application of the supervised learning techniques, as discussed in Section 2.4. In the
same section, we also identified feature engineering as the main challenge in building
a General Feedback Machine Teaching system.

The remainder of this Chapter investigates the feasibility of a General Feedback Ma-
chine Teaching system based on an example. The goal is not to present the best possible
solution to the machine learning problems involved, but to show that building such a
system is indeed feasible. The chosen example domain, namely rating web forum posts,
is introduced in Section 3.1.1. As there is no directly related or more so prior work, Sec-
tion 3.2 presents prior research on useful features for this domain. Section 3.4 describes
the evaluation procedure and Section 3.5 presents the evaluation results on a real data
set.

3.1.1 Example domain

The example chosen for this evaluation is that of providing ratings of web forum posts.
The goal of a General Feedback Machine Teaching system in this example can be phrased
as:

Given a set of human-rated forum posts, a machine model is learned that is
capable of predicting a rating for a yet unseen post.

We will now address the question why this is an interesting domain to apply Machine
Teaching to. We will do so in three steps: First, we will introduce the example domain
in greater detail to motivate it. Second, we will discuss the kind of knowledge involved
to motivate the inappropriateness of current technology enhanced learning systems.
And lastly, we will present arguments why Machine Teaching should be applicable to
this task

Challenges in Teaching to Write for Web Forums

However, the posting habits between different web forums vary greatly. Thus, the
knowledge needed to write posts that are regarded highly by the community of a given
forum cannot be (easily) transferred to another forum and thereby community. Thus,
the task of teaching this knowledge through current technology enhanced learning is
hard for the reasons discussed in Chapter 1.

54

3.2 State of the Art

Requirements for Machine Teaching to Write for Web Forums

In order to apply Machine Teaching, we need reliable data consisting of human-rated
web forum posts, a machine learning technique to learn from this data and feature
extraction procedures to make the data available to the machine learning algorithm.
We will now briefly show that each of these requirements can be met in this domain:

Data Availability: Many websites such as Google Groups1, Yahoo! Groups2 and Nab-
ble3 offer their users the possibility to rate forum posts in order to filter them.
These ratings can be exploited by a Machine Teaching system.

Machine Learning Technique: As introduced earlier, we are facing a supervised ma-
chine learning problem. As the field is well researched, the choice of a concrete
technique from this realm largely depends upon the type of rating in the data and
sought from the Machine Teaching system.

Feature Engineering: Text has long been an application domain for machine learning,
e.g. for SPAM filters, automatic text categorization or information retrieval sys-
tems. Additionally, the natural language processing community has come up
with a countless amount of feature extraction procedures. Thus, we can tap into
this resource during feature engineering for the Machine Teaching system.

We can thus conclude the description of the example, Machine Teaching to write web
forum posts, faithfully: It is a worthwhile example that poses serious challenges to
current technology enhanced learning technology but where all the requirements for
an application of Machine Teaching are met.

Below, we will first introduce related research in Section 3.2 before devoting Sec-
tion 3.3 to feature engineering. The Sections 3.4 and 3.5 present the evaluation proce-
dure and results obtained with these.

3.2 State of the Art

To the best of our knowledge, there is no approach described in the literature that offers
exactly the functionality sought in this chapter. There is, however, influential work in
the following areas that shall be discussed here:

• Approaches that have a similar goal to the one of Machine Teaching, but operate
using fixed rules, namely Automatic essay scoring systems.

• Works that investigate the characteristics of the collaborative rating data.

• Research that provides pointers to features to be extracted for the task at hand.

1http://groups.google.com
2http://groups.yahoo.com
3http://www.nabble.com

55

http://groups.google.com
http://groups.yahoo.com
http://www.nabble.com

3 General Feedback Machine Teaching for Web Forum Authors

3.2.1 Automatic Essay Scoring

The automatic grading of texts has been investigated for quite some time in the research
area of automatic essay scoring systems. Numerous systems and approaches have been
discussed in the literature, e.g. in [CB04] and [AB06]. Valenti et al. present an overview
of the state-of-the-art in [VNC03].

These systems are based on the observation that there exists a fairly well defined no-
tion of what a “good” essay is and how this manifests itself in detectable features of
the essay. Additionally, essays tend to follow a very similar structure, at least those
that are written to be graded by a teacher. The systems then detect these features of the
essay as well as its structure using various heuristics and deduct a grade from these.
So in essence, the grading function is not learned from data, but designed based on spec-
ifications. This obviously is impossible in the web scenario, where each topic, website
sometimes each single web forum have distinct, implicit quality standards.

3.2.2 Data Characteristics

A question regarding the available data is whether the typically relatively few ratings
from a subset of the community can be assumed to be indicative of the community’s
opinion at large. There is no data available on this subject for web forums, presumably
due to the high cost of obtaining it.

However, other websites, most prominently the IT news site Slashdot4, employ a
sophisticated meta-rating scheme that adds a pee-review of the ratings to the system
to ensure consistent ratings. Based on data from this peer review process from Slash-
dot, Lampe and Resnick showed in their empirical study [LR04] that the rating data is
indeed consistent: Disputes of the original rating are very rare events.

Whether or not this result can be transferred to web forums is hard to say, as the
audience of Slashdot, mostly IT students and professionals, is hardly representative
for Web users at large. This result does, however, show that consistent ratings are
attainable. And as we will see later, we are able to predict the rating quite well which
further substantiates the conclusion that the ratings of posts found in web forums are
consistent.

3.2.3 Feature Inspirations

A track of research studies the behavior of students in web forums in conjunction with
their academic success. In [KSF+06] it was found that there is a strong relation between
student’s posting habits and their final grade even to the point that the grade can be
predicted from the posting habits. This supports our claim that writing well in forums
is an worthwhile skill to learn. The main features used in the grade prediction are the
number of posts, the average post length and the average number of replies to posts
of the student. Thus, it is worthwhile to investigate the same features for the Machine
Teaching task at hand.

4http://www.slashdot.org

56

http://www.slashdot.org

3.3 Feature Engineering

Kim et al. present a method to predict product review helpfulness in [KPCP06]. In
many web shops, customers can review products both in text as well as formally using
a rating scale. Sites like Amazon also allow for the reviewing of these reviews to assure
the quality of the reviews submitted to the site. Readers of a review are asked “Was
this review helpful to you?” with the answer choices “Yes” or “No”. These ratings are
very explicit and very standardized, as each reviewer is asked to rate the review based
on the same quality of the review, namely its helpfulness. Kim’s system than makes
use of the explicit content of the review in order to predict its helpfulness with great
accuracy. However, such a system is not easily transferable to the domain at hand for
a number of reasons. The ratings a Machine Teaching System operates on cannot be
assumed to be about the same quality dimension, with helpfulness being merely one of
the choices as opposed to being the sole dimension of quality. Additionally, the system
presented in [KPCP06] gains much of its performance from the explicit content of a
review, such as the numerical rating of the product discussed in the review. Clearly,
such information cannot be assumed to be available in all Machine Teaching instances.
The study [KPCP06] does, however, show that such structured data is very useful and
should be used whenever possible.

Summary: The related work suggests that the task of rating texts is possible, as it
has been done by human-designed systems before, albeit with an inherently limited
scope when compared to the aim of the approach presented in this chapter. The rating
data underlying a machine learning approach can be assumed to be consistent with the
community, albeit the available data on that point is sparse. Lastly, we have briefly dis-
cussed other machine learning based approaches operating on similar data to provide
us with feature ideas for the task at hand.

The next step in investigating the feasibility of a General Feedback Machine Teach-
ing system in the text domain is to present the features developed for the system in
Section 3.3 before presenting the evaluation procedure and results in the Sections 3.4
and 3.5

3.3 Feature Engineering

As mentioned earlier, feature engineering is the crucial step to the success of a super-
vised machine learning application: While we can resort to an off-the-shelve supervised
machine learning algorithm, feature engineering needs to be done for each application
domain separately.

In this section, the feature extraction procedures developed for the Machine Teaching
system are described. As introduced in Section 2.4, the input data which consists of
unstructured text needs to be converted into vectors. This process is commonly referred
to as feature extraction. Designing and implementing features for this task is mainly a
manual process, which is guided by prior work and experience and intuition. Thus,
feature engineering adds a systematic bias to the machine learning process at large, but
one that is believed to aid in the learning task. For the system at hand, feature extractors

57

3 General Feedback Machine Teaching for Web Forum Authors

from five different classes have been built: Surface, Lexical, Syntactic, Forum specific and
Similarity features. The features and their extraction procedure are now described in
detail.

3.3.1 Surface Features

The first class of features deals with properties of the text that are extractable on the
character level of the posts.

Length: It is hypothesized that the length of a post can have an influence on the quality
of it according to community standards. Thus, this feature captures the number
of tokens as reported by the tokenizer supplied by the Java SDK.

Question Frequency: The fraction of sentences ending with a question mark “?”. De-
pending on the community, the presence or absence of questions and their fre-
quency may be indicative of the perceived quality of the post.

Exclamation Frequency: The fraction of sentences ending with and exclamation mark “!”.
Frequent use of exclamation marks is often considered rude in web forums.

Capitalized Word Frequency: The fraction of words spelled all CAPITALIZED. Words
spelled like this are commonly associated with shouting in the conversation and
are thus indicative of rude behavior.

3.3.2 Lexical Features

This class of features is concerned with the actual wording of the posts.

Spelling Error Frequency: It is commonly agreed that texts with a high fraction of mis-
spelled words are considered bad. Thus, this feature detects the percentage of
words that are not spelled correctly. In the experiments, the Jazzy spell checking
engine5 was used together with an English dictionary, as only English texts were
analyzed.

Swear Word Frequency: This feature extractor stems from the same line of thought as
the extractors for the exclamation frequency and the capital word frequency: Rude-
ness in the text might indicate poor quality according to the community stan-
dards. Here, rudeness is detected rather directly by determining the percentage
of words that are on a list of swear words. The list of swear words was compiled
from public resources like WordNet and the Wikipedia. This swear word list con-
tains more than eighty words like “asshole”, but also common transcriptions like
“f*ckin” which occur frequently in web forum posts.

5http://jazzy.sourceforge.net

58

http://jazzy.sourceforge.net

3.3 Feature Engineering

3.3.3 Syntactic Features

This class for feature extractors is concerned with the syntactic level of the texts ana-
lyzed. To do so, the texts are annotated with part-of-speech tags as defined in the PENN
Treebank tag set, see [MSM94].

To do so, the TreeTagger [Sch95] was used, parametrized by the parameter files for
English texts supplied with it. The fraction of each part-of-speech is then stored as one
dimension in the resulting feature vector.

3.3.4 Forum Specific Features

The texts analyzed here stem from web forums, a genre of text that exhibits certain
features not present in other forms of text. The presence or absence of these specific
features may have an influence on the quality of the posts as perceived by the fellow
users of the same forum. The following features were extracted:

IsHTML: The users of a forum are usually offered some means to style their posts.
In the case of the Nabble data used below, this was done using standard HTML
markup. This feature thus encodes whether or not the author of the post made
use of this offering.

IsMail: Nabble also bridges mailing lists into web forums and vice verse. This feature
captures the origin of a specific post, namely whether it is originally an email. If
not, the post has been entered through the web interface of Nabble.com.

Quote Fraction: When authoring a post, the user may choose to quote another post,
e. g. to answer to a specific question raised in that other post. This is often con-
sidered good style. However, some posts quote much without an obvious benefit
to the post. This feature thus captures the fraction of characters within quotes of
a post to allow the machine learning model to capture this property.

Path and URL Counts: In forums where users help one another, a direct pointer to fur-
ther information may be considered to be a good aspect of a post. In the experi-
ments, two special kinds of pointers are considered: UNIX path names and URLs.
Their number is counted and forms a feature in the feature vector.

3.3.5 Similarity features

Web forums are typically organized by topic. Posts which do not match the topic are
called “off topic” and are usually considered to be bad posts. In order to capture the
relatedness of a post to the topic it is posted in, the cosine between the word vector of
the post and the word vector of the topic is used as an additional feature.

Note that this list of features is just an example of the feature engineering process
required in the application of the Machine Teaching Process for general feedback. In
every application, the set of features to extract needs to be re-evaluated.

59

3 General Feedback Machine Teaching for Web Forum Authors

Next steps: The remainder of this Chapter will focus on the evaluation of these fea-
tures for the task of rating web forum posts, starting with describing the procedure
for doing so in Section 3.4. The following section will then present results from that
evaluation and present conclusions thereof.

3.4 Evaluation Procedure

In this section, we will describe the evaluation process used to evaluate the viability of
a General Feedback Machine Teaching system for rating web forum post. We describe
the evaluation process in several steps:

• The data used for the evaluation is described and descriptive statistics of it are
discussed in Section 3.4.1. That section also goes into detail of the pre-processing
and filtering of the data for the experiments reported in this chapter.

• The evaluation method is described in Section 3.4.2, including the cross-validation
setup and the choice of the supervised machine learning algorithm and imple-
mentation thereof.

The results obtained using this experimental setup are presented in Section 3.5.

3.4.1 Data Set and Pre-processing

The data to evaluate the system was kindly provided by Nabble6. Nabble is a web
site that hosts forums for a wide range of communities and also mirrors mailing list
conversations onto web forums. Below both kinds of content will be referred to as web
forums.

The web forums hosted by Nabble are placed in a hierarchy, organized by their topic.
Each forum is placed into exactly one category within this hierarchy. The discussions
in reach forum are further subdivided into conversation threads. All the posts in reply
to the same post are part of one thread. As these posts may again attract replies, the
forums forum a tree with posts and their respective answers as edges and leaves.

Posts at Nabble can be rated on a five star scale by the users, with five stars being the
highest rating. Analysis of the data showed that most of the rated posts are within the
“Software” category7. To analyze the influence of the topic and thus the community on
the quality standards, the data was analyzed in three data sets:

ALL: All rated posts in the database. This is the broadest of all data sets.

SOFT: All rated posts of forums that are in the software category. These are posts that
concern closely related.

6http://www.nabble.com
7http://www.nabble.com/Software-f94.html

60

http://www.nabble.com
http://www.nabble.com/Software-f94.html

3.4 Evaluation Procedure

Stars Label ALL SOFT MISC
? Poor 1928 45% 1251 63% 677 29%
?? Below Avg. 120 3% 44 2% 76 3%

? ? ? Average 185 4% 69 4% 116 5%
? ? ?? Above Avg 326 8% 183 9% 143 6%

? ? ? ? ? Excellent 1732 40% 421 21% 1311 56%

Table 3.1: Categories and their usage frequency at Nabble.

MISC: All posts that are in ALL, but not in SOFT. This data set is very diverse in
topic, even more so than ALL, as half of ALL are posts from SOFT. Topics range
from discussions amongst Wikipedia community members to discussions of mo-
tor bikes.

Table 3.1 shows the distribution of average ratings on the five star scale employed
by Nabble. From this statistics, it becomes evident that users at Nabble prefer extreme
ratings. Therefore, the task of predicting the post quality can be considered as a binary
classification task. Posts with less than three stars are rated as “bad”. Posts with more
than three stars are “good”.

Data Pre-processing

The goal of data preprocessing was to clean the data to a point where the label only con-
tains variance stemming from the preceived quality of the forum posts. To do so, osts
with an average rating of exactly 3 were removed, as they cannot be attributed to any
of the binary classes. Manual analysis of posts with contradicting votes on the binary
scale revealed that they were mostly spam, which was voted high for commercial inter-
est by account associated with the poster and voted down for being spam. Thus, these
posts were removed, too. We also filtered out the posts that did not contain any text,
but only attachments like pictures and program files as the quality of these posts cannot
be attributed to the textual content. Finally, we removed non-English posts using a sim-
ple heuristics: Posts that contained a certain percentage of words above a pre-defined
threshold, which are non-English according to an English dictionary, were considered
to be non-English.

The upper part of Table 3.2 shows how many posts were removed from the three
data sets. Note that we did the filtering independently for each filter. Thus, posts that
matched several filtering criteria contribute more than once to the statistics. The lower
part of that table shows the distribution of good and bad posts after filtering.

3.4.2 Method

Using the feature extractors described above, we compiled a feature vector for each
post. Feature values that were not normalized by definition were scaled to the range

61

3 General Feedback Machine Teaching for Web Forum Authors

ALL SOFT MISC
Unfiltered Posts 4291 1968 2323

All ratings three stars 135 3% 61 3% 74 3%
Contradictory ratings 70 2% 14 1% 56 2%

No text 56 1% 30 2% 26 1%
Non-English 668 15% 361 18% 307 13%

Remaining 3418 80% 1532 78% 1886 81%

Good Posts 1829 54% 947 62% 1244 66%
Bad Posts 1589 46% 585 38% 642 34%

Table 3.2: Number of posts filtered out in the different data sets.

[0.0, . . . , 1.0]. To classify the posts, we use support vector machines. In particular, we
used a SVM with a Gaussian kernel as implemented in the LibSVM module in the YALE
toolkit [MWK+06] in all experiments.

We perform stratified ten-fold cross validation for performance evaluation. The data
is split into ten sub sets where each exhibits the same class distribution as the full data
set. The system is then trained on nine of these sub sets and evaluated on the last. We
report the mean results of all ten evaluations.

Several randomly chosen experiments were repeated using the leave one out eval-
uation scheme. There, the system is trained on all but one post and evaluated on the
remaining one. The average over all runs over all data points is returned as the per-
formance metric. These experiments yielded comparable results to the ones obtained
using cross validation. Thus, we only report the latter.

3.5 Evaluation Results and Discussion

In this section, we present and discuss the evaluation results obtained through the pro-
cedure introduced in the previous section. We first present the empirical results in
Section 3.5.1. In Section 3.5.2, we discuss the errors the system makes to allow us to
draw the conclusions presented in Section 3.6.

3.5.1 Results

Table 3.3 shows the average cross validation accuracy for all combinations of feature
and data sets when compared to a baseline system. Note that we did not perform pa-
rameter tuning for the different feature sets but kept the parameters fixed8 and therefore
minor performance gains may still be possible.

8The parameters where fixed to λ = 0.1 and σ = 0.1.

62

3.5 Evaluation Results and Discussion

Baseline: A baseline system is a simple system that serves as a plausibility check of
the results obtained. In our case, we employ a majority-class classifier as the baseline:
Such a classifier always predicts the class which had the majority of instances in the
training data. Example: If 70 % of the posts in the training data are labeled as good
posts, the majority class classifier labels all unseen posts as good. Clearly, any more
sophisticated machine learning system should outperform this baseline.

As shown in Table 3.3 , all results but one (SIM/ALL) are equal to or better than the
baseline. The usage of all features results in the best or close to best performance for all
data sets. The results on the MISC data set are only slightly better than the baseline. The
gains on the SOFT and ALL data sets over the baseline are significant. Naively, one may
think that the performance on the ALL data set is the average between the performance
on MISC and SOFT, as both form approximately one half of the data in ALL. The results
are different, and the performance on ALL is comparable to the performance on SOFT.
Thus, the system is able to learn how to classify posts in MISC from posts in SOFT. It
is thus plausible to assume that the rating structure in some posts of the MISC data set
is very close to the SOFT data set, while the overall rating structure is too diverse to be
captured correctly by the system.

The difference in rating structure also shows in the analysis of the best performing
feature categories, which are different for each data set. For MISC, the surface features
perform best. For SOFT, the forum specific features work best, when only one feature
category is used.

It is useful to have a look at the performance of all other feature categories, when
the single best one is not present to assess the influence of the best feature category on
the overall performance. For MISC, this leads to a performance on the baseline level.
For SOFT, the drop in performance is much smaller, yet still measurable. For ALL, the
effects are the smallest, being almost zero for the removal of the lexical features.

To evaluate the features in more detail, additional experiments were performed on
the SOFT data set with only the features from the best performing category, namely
the Forum specific features. Table 3.4 shows that IsMail and Quote Fraction are the
dominant features. This is noteworthy, as those features are not based on the domain
of discussion.

3.5.2 Performance Analysis

In addition to the numerical evaluation presented above, we will now present a more
detailed analysis of the performance of the system.

The first step to do so is to investigate more closely what kind of errors contributed
to the average accuracy presented above through confusion tables. In a second step,
we present a qualitative evaluation of frequent mistakes of the system. Besides point-
ing out open issues in the currently implemented system, the latter allows us to draw
conclusions regarding the inherent limits of the approach.

63

3 General Feedback Machine Teaching for Web Forum Authors

SUF LEX SYN FOR SIM ALL SOFT MISC√ √ √ √ √
77.53% (1.45) 89.10% (1.44) 71.95% (1.09)√

– – – – 64.72% (1.21) 61.82% (1.00) 71.31% (1.08)
–

√
– – – 74.08% (1.38) 71.82% (1.16) 65.96% (1.00)

– –
√

– – 69.18% (1.29) 82.64% (1.34) 66.70% (1.01)
– – –

√
– 74.08% (1.38) 85.05% (1.36) 65.96% (1.00)

– – – –
√

46.49% (0.87) 62.01% (1.00) 65.96% (1.00)
–

√ √ √ √
75.92% (1.42) 89.10% (1.44) 66.60% (1.01)√

–
√ √ √

77.39% (1.45) 89.36% (1.46) 72.00% (1.09)√ √
–

√ √
76.27% (1.43) 85.03% (1.38) 70.03% (1.06)√ √ √

–
√

72.82% (1.36) 82.90% (1.34) 71.74% (1.08)√ √ √ √
– 76.83% (1.44) 88.97% (1.44) 72.43% (1.10)

Baseline 53.51% (1.00) 61.82% (1.00) 65.96% (1.00)

Table 3.3: Accuracy with different feature sets. SUF: Surface, LEX: Lexical, SYN: Syntax,
FOR: Forum specific, SIM: similarity. The baseline results from a majority class
classifier.

Confusion Tables

Confusion tables present the performance of a system in more detail by showing the
number of all four performance relevant cases of a binary classifier:

True Positives: These are posts that are labeled as good by the users and are predicted
to be good posts by the system.

True Negatives: Posts which are labeled and correctly predicted to be bad.

False Positives: The system incorrectly predicted a good label for these posts, while
the users labeled it as bad.

False Negatives: In the last case, the system predicted a bad label while the users actu-
ally labeled the post as good.

Depending on the system evaluated, a balanced or unbalanced rate of false positives
and false negatives may be desired. Example: In the case of an email spam filter, one
typically wants to minimize the number of emails that are falsely labeled as spam by
the system, even if that means to compromise the rate of spam caught by the filter.

In Machine Teaching, a balanced performance is more desirable to allow the learner
to draw her own conclusions from the rating presented to her.

Tables 3.5, 3.6 and 3.7 contain the confusion tables for the system using all features
on the three different data sets. The system produces approximately an equal amount
of false positives and false negatives on the ALL and SOFT data sets. However, it has
a tendency towards false positives on the MISC data set. This indicates that systems

64

3.5 Evaluation Results and Discussion

ISM ISH QFR URL PAC Avg. accuracy√ √ √ √ √
85.05%√

– – – – 73.30%
–

√
– – – 61.82%

– –
√

– – 73.76%
– – –

√
– 61.29%

– – – –
√

61.82%
–

√ √ √ √
74.41%√

–
√ √ √

85.05%√ √
–

√ √
73.30%√ √ √

–
√

85.05%√ √ √ √
– 85.05%√

–
√

– – 84.99%√ √ √
– – 85.05%

Table 3.4: Accuracy with different forum specific features. ISM: IsMail, ISH: IsHTML,
QFR: QuoteFraction, URL: URLCount, PAC: PathCount.

should be trained separately for different topics of discussion and therefore user com-
munities.

Qualitative Analysis of important System Errors

Below, we will give descriptions of common errors of our system as well as some ex-
amples from the data. We will also provide conclusions on how to improve the current
system to overcome the errors where possible and indicate errors which exemplify the
inherent limits of the approach.

Ratings based on domain knowledge: The following post from the SOFT data set
shows no apparent reason to be rated badly. The human rating of this post seems to be
dependent on deep domain knowledge, which cannot be represented in the Machine
Teaching System easily. Thus, these posts are part of the inherit limits of the approach.

65

3 General Feedback Machine Teaching for Web Forum Authors

true good true bad sum
pred. good 1517 456 1973

pred. bad 312 1133 1445
sum 1829 1589 3418

Table 3.5: Confusion matrix for the system using all features on the ALL data sets.

true good true bad sum
pred. good 490 72 562

pred. bad 95 875 970
sum 585 947 1532

Table 3.6: Confusion matrix for the system using all features on the SOFT data sets.

true good true bad sum
pred. good 1231 516 1747

pred. bad 13 126 139
sum 1244 642 1886

Table 3.7: Confusion matrix for the system using all features on the MISC data sets.

Example 1.
> Thank You for the fast response, but I’m not
> sure if I understand you right. INTERRUPTs can
> be interrupted (by other interrupts or signals) and
> SIGNALS not.

Yup. And I responded faster than my brain could shift gears
and got my INTERRUPT and SIGNAL crossed.

> All my questions still remain!

Believe J"org addressed everything in full. That the
compiler simply can’t know that other routines have left
zero reg alone and the compiler expects to find zero there.

As for SREG, no telling what another routine was doing with the
status bits so it too has to be saved and restored before any
of its contents possibly get modified. CISC CPUs do this for
you when stacking the IRQ, and on RTI.

66

3.5 Evaluation Results and Discussion

Automatically generated mails: Sometimes, automatically generated mails like error
messages end up on the mailing lists mirrored by Nabble. These mails can be written
very nicely and are thus misclassified by the system as good posts, while they are bad
posts from the point of view of the users. These errors are conceptually easy to avoid
by pre-processing. In fact, these posts should never be used for a Machine Teaching
system, as there is little to learn from them.

Non-textual content: Especially the SOFT data set contains posts that mainly consist
of non-textual parts like source code, digital signatures and log messages from pro-
grams. This content confuses our system to miss-classify these posts as bad posts even
though the sheer presence of these parts may be very useful to the reader.

To overcome this problem, the non-textual parts need to be marked. They can then
be ignored in the quality assessment of the textual content. Additionally, the presence
and the amount of non-textual content can be used as an additional feature. A Detailed
Feedback Machine Teaching system could then even suggest to the learner to attach
supporting material to make their post more valuable to the readers.

Very short posts: Posts which contain only a few words show up as false positives and
false negatives equally, as for example a simple “yes” from the grand master of a certain
field might be regarded as a very good post, while a short insult in another forum might
be regarded as a very bad post. For Machine Teaching, it thus seems advisable not to
rate very short posts at all, as the system is very likely to rate the post wrong and thus
to confuse the learner.

Opinion based ratings: Some ratings do not rate the quality of a post, but the expressed
opinion. In these cases, the rating is an alternative to posting a reply to the message
saying “I do not agree with you”.

Take for example the following post which is part of a discussion amongst Wikipedia
community members from the MISC data which has been misclassified as a bad post:

Example 2.
> But you would impose US law even in a country where
> smoking weed is legal
Given that most of our users and most significant press
coverage is American, yes. That is why I drew the line there.
Yes, I know it isn’t perfect. But it’s better than anything
else I’ve seen.

Such posts form a hard challenge for automatic systems. However, they may also
form the upper bound for this task: Humans are unlikely to predict these ratings cor-
rectly without additional knowledge about the rater, either.

67

3 General Feedback Machine Teaching for Web Forum Authors

3.6 Conclusion

We studied the machine learning aspects of a General Feedback Machine Teaching sys-
tem for web forum post writing in this chapter. The goal of this study was to answer
the question whether suitable features can be found that allow a supervised machine
learning method to rate the forum posts well.

The quantitative evaluation presented in this chapter suggests that such features
have indeed been found as the system achieves an average accuracy of up to 90 %.
The qualitative study also substantiates the claim that proper feature engineering is the
key factor for the predictive performance of the system.

The qualitative analysis of the results also suggest important considerations and lim-
its for Machine Teaching:

• Not all ratings given by humans can be predicted by a machine. The examples
found in the qualitative study are ratings that express opinions and those which
require deep domain knowledge to be given.

• Data pre-processing for Machine Teaching should be done in addition to the pre-
processing done to allow the machine learning system to perform well. The study
in this chapter follows machine learning best practices when it comes to pre-
processing such as filtering ambiguously rated posts. The quantitative analysis of
the system’s performance however revealed additional need for pre-processing:
The data contained artifacts such as automatically generated content that should
not be part of the training data for a machine teaching system.

• The accuracy of the system on short posts is to low, even if above random, to
justify presenting the predicted ratings to the learner.

Besides the hard limits in machine predictability of human behavior inherent to the
approach, all of these considerations can be addressed through engineering.

Thus, and given the good overall performance of the system, it is safe to conclude
that the state-of-the-art machine learning techniques as well as the best practices in the
field can be applied to build General Feedback Machine Teaching systems.

Next steps in this thesis: Given this conclusion, the remainder of this thesis departs
from General Feedback Machine Teaching and focuses on the task of Detailed Feedback
Machine Teaching. As this task is more ambitious from a machine learning perspective,
Chapter 4 presents an algorithm that forms the foundation for addressing this task.
Chapter 5 leaves the field of Machine Teaching in order to evaluate that algorithm on
well established Recommender Systems tasks. This allows us to compare the algorithm
performance to that of the state-of-the-art in that field. In Chapter 6, a similar study to
the one in the present chapter is described, albeit for the Detailed Feedback Machine
Teaching case.

68

4 Generalized Matrix Factorization

Contents
4.1 Introduction . 70
4.2 State of the Art . 71
4.3 Regularized Matrix Factorization . 73
4.4 Loss Functions . 76

4.4.1 Element Based Loss Functions 76
4.4.2 Row Based Loss Functions . 79
4.4.3 A faster Ordinal Regression Loss Function 80
4.4.4 An NDCG Loss Function for Matrix Factorization 85
4.4.5 Conclusion . 92

4.5 Optimization . 92
4.5.1 Optimization over the Row Matrix R 95
4.5.2 Optimization over the Row Matrix C 95
4.5.3 New Row Optimization . 96

4.6 Extensions to the Regularized Matrix Factorization Model 96
4.6.1 Row and Column Biases . 96
4.6.2 Adaptive Regularization . 97
4.6.3 Structure Exploitation with a Graph Kernel 98
4.6.4 Row and Column Features . 98

4.7 Conclusion . 99

69

4 Generalized Matrix Factorization

4.1 Introduction

This chapter introduces a novel model and algorithm for the problem of matrix factor-
ization. Before doing so, it is shown how both the Recommender System problem and
many Machine Teaching settings can be rephrased into matrix factorization instances.

We will first show that the available data in both Recommender Systems and Ma-
chine Teaching can be thought of as a sparse matrix Y for which a dense approximation
is sought. The entries at the formerly sparse points of this approximation constitute
the prediction. This view on the data is visualized in Figure 4.1 and described in the
following paragraphs:

Machine Teaching with Matrix Factorization: In a Machine Teaching setting, each row
in Y corresponds to one artifact. The columns of Y contain the values of the struc-
ture elements of this artifacts. This matrix is typically sparse, as not all artifacts
exhibit all structure elements. To give detailed feedback for the learner, the Ma-
chine Teaching System needs to deduct a model from the data which can compute
a dense matrix F which contains predictions for the sparse points in Y. In contrast
to the recommender system setting, the Machine Teaching system may not only
make use of the predictions for the sparse entries of Y but also of the discrepancy
between the known entries in Y and those in the model F, e. g. to correct the
learner.

Recommender Systems with Matrix Factorization: In Recommender Systems, Y has
as many rows as there are users and as many columns as there are item. The
entries Yi, j of this matrix are the label given to item j by user i. The type of these
entries depends on the kind of label available in the specific data set. Note that
this matrix is very sparse. In a typical movie recommender scenario, there are in
the order of twenty thousand movies and thus columns in Y. Not many users
have watched and rated all these movies. The goal for the recommender system
based on this sparse matrix Y is to find a dense matrix F of equal dimensions that
contains predictions for the user-item pairs not present in Y.

The algorithm described in this chapter is applicable to both scenarios: Machine
Teaching and Recommender Systems. This is due to the fact that it operates on the
rather abstract level of matrices as opposed to their real world correspondences of arti-
facts, structural elements, users and items.

Honoring this aspect and to facilitate a broad view on the algorithm, the remainder
of this chapter is written in an application-agnostic manner. We will give examples
from both the Machine Teaching and the Recommender Systems perspective where
appropriate.

In this application-agnostic notation, the goal of the algorithm can be phrased as:
Given a potentially sparse input matrix Y ∈ Tr×c find a dense matrix F ∈ Tr×c that
explains Y well and predicts entries for the sparse elements in Y.

70

4.2 State of the Art

Str
uc

tur
al

Ele
men

t A

1 – 1 3 …

– 0 7 – …
… … … … ……

…

Y

Str
uc

tur
al

Ele
men

t B

Str
uc

tur
al

Ele
men

t C

Str
uc

tur
al

Ele
men

t D

Artifact 1
Artifact 2
Artifact 3
Artifact 4
Artifact 5
Artifact 6

Ite
m A

2 1 5 – …

0 – 3 1 …
… … … … ……

…

Y

Ite
m B

Ite
m C

Ite
m D

User 1
User 2
User 3
User 4
User 5
User 6

Machine Teaching Recommender Systems

Figure 4.1: Modeling the available data in a Detailed Feedback Machine Teaching Sys-
tem (left) and in a Recommender System (right) as a sparse matrix Y. The
symbol “–” indicates a sparse point (missing value)

4.2 State of the Art

The development of factor models and in particular matrix factorization methods are an
active field of research. Factor models have shown remarkable performance in many
instances, especially in the context of the Netflix prize challenge where all of the top
contenders use factor model based approaches.

In matrix factorization methods, the data is assumed to be contained in a sparse ma-
trix Y ∈ Tr×c (Yi, j in Recommender Systems typically indicates the rating of item j by
user i). The basic idea of matrix factorization is to fit this matrix Y with a low rank ap-
proximation F. Here, F is computed as F = RC> where R ∈ Rr×d and C ∈ Rc×d. More
specifically, the goal is to find an approximation that minimizes a loss measure such as
the sum of the squared distances between the known entries in Y and their predictions
in F.

Below, we introduce major means of finding the approximation F, starting with Sin-
gular Value Decomposition before discussing the Regularized Matrix Factorization tech-
nique that the algorithm presented here is built upon. The last part of this section will
be devoted to the related work on seemingly binary input matrices Y.

Singular Value Decomposition One way of doing this is to compute a Singular Value
Decomposition of Y and to use only a small number of the vectors obtained by this
procedure. In the information retrieval literature, this numerical operation is commonly
referred to as Latent Semantic Indexing as introduced in [Hul94].

Note, however, that this method does not do justice to the way Y was formed as Y is
sparse. This fact is ignored by the SVD and depending on the specific implementation,

71

4 Generalized Matrix Factorization

the sparse elements in Y are assumed to be 0 or are replaced with averages in order to
compute the SVD. Both approaches potentially misinterpret the data. If e. g. a user did
not rate an item this may correspond to a variety of reasons that cannot be captured
by these assumptions. Many rating schemes assume lower ratings to be worse, and
filling in the sparse elements with ratings of 0 assumes that the user did not like these
movies. The filling with (per user) averages fares slightly better, but that assumption is
questionable in many instances, too.

The filling poses even more of a problem in Machine Teaching where each value of a
structure element may have an impact on the artifact quality. Both 0 and the the average
value of the remaining elements are likely completely unrelated to a reasonable value
to be filled in. Even worse, this approach ignores the fact that the sparse elements in Y
are the requested output of the algorithm and should thus not be used as input.

Regularized Matrix Factorization In [SJ03], an alternative approach is suggested which
aims to find a factorization of Y in two matrices R ∈ Rr×d and C ∈ Rc×d such that
F = RC> with the goal to approximate the observed entries in Y rather than approxi-
mating all entries at the same time. This approach has been shown to work well on e. g.
rating data from users on movies such as in the Netflix price competition.

Minimizing the rank of F is intractable in practice for all but the smallest problems.
Instead. the question of capacity control of the resulting predictor has been addressed
in [RS05] and [SRJ05] by means of matrix norms on F. It has been shown in [SS05]
that the Frobenius norm on R and C is a proper norm on F and can thus be used for
capacity control. In addition, they proposed a multi-class version of the hinge loss
function that together with the Frobenius norm induces a large margin solution. The
term Maximum Margin Matrix Factorization (MMMF) has thus been coined for this ap-
proach in [SRJ05]. Similar ideas based on matrix factorization have also been proposed
in [TPNT07] and in [SM08, BKV07] which mainly focus on improving performance on
the Netflix data set. In [SG08] an integration of these different approaches into one
model is presented. Note that all these methods are colloquially referred to as “SVD”
or “SVD-style”, even though they do not use a SVD in the strict sense.

None of these approaches address the problem of a prediction that needs to be con-
sistent per-row as required in the Machine Teaching setting.

Binary data In many instances, the data is seemingly binary, for example when build-
ing a Machine Teaching System for software engineering:

Example 5. We will later model code as a matrix of caller-callee relations. An entry of Yi, j = 1
in this matrix indicates a call of caller i to callee j. However, the opposite entry cannot be
attributed to a single cause. The absence of a call can e. g. be attributed to a conscious decision
of the programmer or a bug. Any of these cases will be encoded as a sparse and thus missing
entry in Y, as the true reason typically is unknown.

Note that the same effect also occurs in commercial Recommender Systems that op-
erate on shopping basket data: There, it is only known for sure whether a customer

72

4.3 Regularized Matrix Factorization

bought an item. The information that a customer did not buy an item can be attributed
to a variety of reasons, including being unaware of the item. In that case, a recommen-
dation should be considered for the item. Thus, it is not advisable to equate the absence
of a buy with a dismissal of the item by the customer.

We refer to seemingly binary data like this as dyadic interaction data. It can be rep-
resented as a sparse matrix where Yi, j = 1 indicates that an interaction between row
i and column j was recorded. In Machine Teaching such an entry indicates that the
artifact i has the structural element j. In a Recommender System it indicates that user i
interacted with item j, e. g. by renting the movie j.

Traditionally, rule and memory based systems have been applied in these situations
(see e. g. [AT05]). As discussed in Section 2.5, one of the shortcomings of memory based
systems is that the prediction time scales super linearly with the number of training
samples. This poses a serious restriction, as these systems cannot be used interactively
any more when the number of available training data rises which poses a serious limita-
tion on the applicability of these systems to Machine Teaching scenarios where instant
feedback is required.

Several approaches have been introduced under the term “binary matrix factoriza-
tion”, see e. g. [ZDLZ07]. In these systems, R and C are assumed to be binary, too. How-
ever, this drastically limits the applicability, as finding these matrices then amounts to
solving combinatorial optimization problems. Other approaches based on binary latent
factors [MGNR06] and Gaussian processes [YC07] extract binary factors as well which
induce constrains that would not be particularly useful in the recommender setting
we are considering and provide little control over the treatment of unlabeled values or
negative examples in the data.

Conclusion: The state of the art provides a solid theoretical and empirical base for
matrix factorization approaches. However, most systems do not make use of features,
even though their addition is rather straight forward as we will discuss below. Using
features is crucial for a Machine Teaching System and helps considerably in overcoming
the new user and new item problems in Recommender Systems.

None of the approaches can deal with per-row predictions as they arise in Machine
Teaching and ranking prediction in Recommender Systems. Binary data provides a
formidable and essentially unsolved challenge.

4.3 Regularized Matrix Factorization

In this section, the notion of Regularized Matrix Factorization is presented in greater
detail to allow us to use it as a framework in which to present our algorithm.

As noted earlier, the algorithm presented here is based on the idea of Factor Models:
Each known entry Yi, j is hypothesized to be explainable by a linear combination of d
row factors Ri ∈ Rd and d columns factors C j ∈ Rd:

Fi, j := 〈Ri, CJ〉 (4.1)

73

4 Generalized Matrix Factorization

Symbol Type Description
Y Tr×c The sparse input matrix
F Tr×c The dense prediction matrix
R Rr×d The dense matrix of row factors
C Rc×d The dense matrix of column factors
r N The number of rows in Y
c N The number of columns in Y
n N The number of entries in Y
T – The entry type in Y and F

L(F, Y) Tr×c ×Tr×c → R The loss function
Ω(F) Tr×c → R The regularizer

λr, R The regularization parameter for R
λc R The regularization parameter for C
S 0, 1r×c Si, j = 1 for values present in Y and 0 otherwise.

g(y) R The weight associated with the label y in the
weighted loss functions.

y, f Tc̃ Dense versions of a row in Y and F where the
sparse elements of Y have been omitted.

Table 4.1: Symbols used

Matrix Factorization models built upon this idea by noting that in effect, F is con-
structed as the multiplication of two matrices R ∈ Rr×d and C ∈ Rc×d:

F := RC> (4.2)

While this model allows to compute the prediction matrix F, it does not indicate how
to compute the prediction matrix F from the input data Y. A very obvious requirement
for F is that it should be “close” to Y. In this thesis as well as in the literature, the
term loss function is used for the measure of closeness. This measure is denoted as
L(F, Y) : Tr×c × Tr×c → R in formulas. The value of it will be called loss value or loss.
Different choices of L(F, Y) facilitate different goals in the prediction. In Section 4.4,
several possible loss functions will be discussed.

This notation enables a more formal definition of the goal: The prediction F should
be the one with minimal loss:

F := argmin
F̂

L
(

F̂, Y
)

(4.3)

As per the prediction rule (4.2), we can rephrase this objective function as:

F := argmin
F̂=R̂,Ĉ

(
L
(

R̂Ĉ′, Y
))

(4.4)

In other words, we are searching for the model consisting of the matrices R and C
that approximates the known entries in Y best. However, only minimizing the loss will

74

4.3 Regularized Matrix Factorization

yield poor performance due to the well known tendency of overfitting: If d is assumed
to be large enough, it is probable that we can find R and C such that the prediction F
perfectly matches the input data Y. However, such a predictor is known to generalize
badly, as it performs badly on unseen data.

Machine Learning theory shows that limiting the capacity of the prediction function
overcomes this problem. In intuitive terms, limiting the capacity of the learning ma-
chine ensures that the learned model is simple and explains the known data well. This
follows the intuition that the most simple model is the one that captures most of the
structure of the problem and thus generalizes well to future, yet unseen data points.

Following this argument, the objective function is extended by a regularizer Ω(F).
Additionally, a regularization parameter λ is introduced to control the trade-off be-
tween model complexity and loss:

F := argmin
F̂

(
L
(

F̂, Y
)

+ λΩ
(

F̂
))

(4.5)

As above, this objective function can be reformulated in terms of the factor matrices
R and C:

F := argmin
F̂=R̂,Ĉ

(
L
(

R̂Ĉ′, Y
)

+ Ω
(

R̂Ĉ′
))

(4.6)

As with the loss, many different choices of the regularizer Ω are possible. The
algorithm presented in this thesis follows the Maximum Margin Matrix Factorization
(MMMF) approach as introduced in [SRJ05]. In MMMF, the L2 or Frobenius norms of R
and C are used as the regularizer:

||X||F =
√

∑
i, j

X2
i, j (4.7)

This leads to an optimization problem similar to the margin maximization interpre-
tation of support vector machines:

F := argmin
F̂=R̂,Ĉ

L(R̂Ĉ′, Y) + λr||R̂||2F + λc||Ĉ||2F (4.8)

Here λr and λc are constants that model the trade-off between the model accuracy
and its complexity.

The formulation in equation 4.8 is not only the base for the algorithm presented here
but also found in similar forms in the literature. The remainder of this chapter will
describe the unique contributions of the algorithm presented in this thesis:

The following sections will describe how to find C and R by means of optimization
in Section 4.5 and the choice of loss function in Section 4.4. The main contribution there
is to use a state-of-the-art recommender and to introduce row based loss functions.
The net effect of these improvements is that now essentially all loss functions known
in supervised machine learning are transferable to matrix factorization. Additionally,

75

4 Generalized Matrix Factorization

several extensions to the basic regularized matrix factorization model are introduced in
Section 4.6.

4.4 Loss Functions

In the argumentation above, the loss function L(F, Y) was treated as a black box. How-
ever, the choice of loss function is crucial to the overall performance of the algorithm.
By choosing a loss function, one can adapt the model to different types T of entries in
Y. Additionally, the choice of loss very directly influences what predictions to expect
from the system.

Example 6. If the loss function chosen is designed for binary entries in Y, that is T = −1, +1
but the real data type is R, the system will perform poorly.

Above, L(F, Y) is assumed to be defined on the whole matrices F and Y for notational
brevity. However, the loss functions used in real applications decompose either per
row or per element of Y and F. Examples of loss functions that decompose per element
are cases where F is sought to represent every entry in Y as good as possible. The case
where the loss decomposes per row is useful in cases where the prediction F should
capture the relations between the entries of each row in Y as opposed to their absolute
value.

This section will present loss functions of use to either the recommender systems or
the Machine Teaching scenario or both. For reasons that will become apparent in the
Optimization Section 4.5, convex loss functions or convex approximations thereof are
in the focus of this section. The optimization algorithms introduced later also depend
on the presence of a (sub-)gradient of the loss function with respect to the prediction F.
Hence, each loss function is introduced together with its gradient in this section.

4.4.1 Element Based Loss Functions

Element based loss functions are used to compute matrix factorizations that recreate
the entries in Y with great accuracy. Thus, they decompose per element:

L(F, Y) =
r

∑
i

c

∑
j

l(Fi, j, Yi, j) (4.9)

While this formulation is straight forward, it ignores a crucial aspect: Y may be sparse
and this definition of the element based loss function computes a loss value even for
i, j where Y has no value. To be able to ignore these entries, the matrix S ∈ {0, 1}r×c is
introduced:

Si, j :=

{
1 if i,j is present in Y
0 otherwise

(4.10)

76

4.4 Loss Functions

This facilitates the following definition of a element based loss function that ignores
entries where Y does not contain a value:

L(F, Y) =
r

∑
i

c

∑
j

Si, jl(Fi, j, Yi, j) (4.11)

As a consequence of this decomposition, the gradient of L(F, Y) with respect to F
decomposes per element, too:

∂FL(F, Y)i, j = Si, j∂Fi, j l(Fi, j, Yi, j) (4.12)

Given both equation (4.11) and equation (4.12), it is sufficient to describe the actual
loss functions in terms of l(Fi, j, Yi, j) and ∂Fi, j l(Fi, j, Yi, j).

Squared Error

The squared error is computed as the squared distance between the true value Yi, j and
the prediction: Fi, j

lsquared(Fi, j, Yi, j) =
1
2

(Fi, j −Yi, j)2 (4.13)

Using this loss results in a regularized least squares regression model. In recom-
mender systems, this loss is often used when the entries in Y are ratings. However,
ratings are typically not given on a real valued scale but as a one out of n selection. In
Machine Teaching, the squared error can be used when the value type of the structure
elements is R.

The gradient of the Squared Error with respect to Fi, j can be derived as:

∂Fi, j lsquared(Fi, j, Yi, j) = Fi, j −Yi, j (4.14)

ε-insensitive Regression

In many cases, a prediction Fi, j does not need to be exact but instead needs only to be
within ε of the exact value. This thought led to the introduction of the ε-insensitive loss
function as presented in [VGS97]:

lε(Fi, j, Yi, j) = max(0, |Fi, j −Yi, j| −ε) (4.15)

Its gradient can be computed as:

∂Fi, j lε(Fi, j, Yi, j) =

{
0 |Fi, j −Yi, j| ≤ ε

sign(Fi, j −Yi, j) else
(4.16)

Note that this formulation of the loss function is not smooth and that a smooth ap-
proximation thereof has been introduced in [DSSS05]. However, the bundle method
optimizer used here can optimize non-smooth loss functions.

77

4 Generalized Matrix Factorization

Hinge Loss

When dealing with binary data in Y, that is T = {−1, +1}, the most natural loss to use
is the so called zero-one loss:

l01(Fi, j, Yi, j) =

{
1 Fi, j 6= Yi, j

0 else
(4.17)

However, this loss function obviously is not convex in Fi, j as it is piecewise constant.
Hence, a convex relaxation of this loss function, the so called Hinge Loss, is commonly
used in machine learning:

lHinge(Fi, j, Yi, j) = max(0, 1− Fi, jYi, j) (4.18)

If the prediction is correct, that is Fi, j = Yi, j, then the product Fi, jYi, j is 1 and the loss
value is zero. The same is true whenever the sign of Fi, j and Yi, j are equal with the
absolute value of Fi, j ≥ 1, thanks to the max. The loss is effectively unbound for the
case where the sign of Fi, j and Yi, j are not equal. In order to keep the predictions Fi, j
within T = {−1, +1}, a prediction rule is used in practice: Whenever Fi, j is less than
zero, the prediction is −1 and else 1.

The resulting function is convex in F and its gradient is computed as:

∂Fi, j lHinge(Fi, j, Yi, j) =

{
0 Fi, jYi, j ≥ 1
1 otherwise

(4.19)

Weighted variant: In many real world scenarios, the data set is not balanced between
the two classes. In a typical Recommender System, the number of items bought by a
user is typically very small compared to the number of items she could buy. In Chap-
ter 6, an example from the Machine Teaching scenario will be discussed in depth which
exposes this characteristic.

In that respect, the matrix factorization problem arising has some similarities with
the supervised machine learning from positive and unlabeled data settings addressed
in [LL03] and [EN08].

In these cases, it is convenient to attach a weight g to the positive labels. This leads
to the following loss function:

lWHinge(Fi, j, Yi, j) = g(Yi, j) max
(
0, 1− Fi, jYi, j

)
(4.20)

where

g(y) =

{
g+ y > 0
1 else

Inclusion of the weight into the gradient computations leads to:

78

4.4 Loss Functions

∂Fi, j lWHinge(Fi, j, Yi, j) =

{
0 Fi, jYi, j ≥ 1
g(Yi, j) otherwise

(4.21)

In [PS09], a solution to a similar problem is proposed based in the work presented
in [HKV08]. However, that solution is limited to the Least Squares loss function.

Logistic Regression

In many instances, one is interested in the probability of a 1 than in its prediction. For
instance, a Machine Teaching system can only present a limited amount of suggestions
to the learner. The predicted probability can be used to filter that list of predictions and
also provide the learner with a sense of importance of the suggestions.

To predict this probability, one can resort to the logistic regression loss function as
introduced in [CSS00]:

llogistic(Fi, j, Yi, j) = log(1 + exp(−Fi, jYi, j)) (4.22)

Its gradient is computed as:

∂Fi, j llogistic(Fi, j, Yi, j) =
−Yi, j

1 + exp(Fi, jYi, j)
(4.23)

Weighted variant: The same reasoning presented for the hinge loss can be applied to
the Logistic Regression, too. The

lWlogistic(Fi, j, Yi, j) = g(Yi, j) log(1 + exp(−Fi, jYi, j)) (4.24)

Inclusion of the weight into the gradient computations leads to:

∂Fi, j lWlogistic(Fi, j, Yi, j) =
−g(Yi, j)−Yi, j

1 + exp(Fi, jYi, j)
(4.25)

4.4.2 Row Based Loss Functions

The loss functions introduced so far compute a loss value per element of the matrices
Y and F. Optimizing the objective function (4.8) thus yields to predictions in F that are
good on average over all elements. This does not ensure that the predictions are coherent
as such, e. g. per row.

However, there are important use cases where per-row coherence is important in
the predictions. Examples include the need to learn inherent per-artifact coherence re-
quirements from the data in Machine Teaching. In recommender systems, the need for
per-row losses stems from the observation that the output of the recommender system
is often used to compute a ranked list of recommendations for each user.

79

4 Generalized Matrix Factorization

While this ranking task can be understood as a rating task followed by sorting, it is
wasteful to do so: Modeling power is invested in precision that ultimately does not
matter. This yields sub-optimal solutions.

This section will thus introduce several per-row loss functions that can be defined as:

L(F, Y) =
r

∑
i

l(Fi∗, Yi∗) (4.26)

Notation: Here, Fi∗ indicates row i of matrix F. Below, we will use the lower case
characters f and y to address dense versions of rows in F and Y. The elements of Yi∗
that are empty are omitted in both y and f .

Example 7. Let

Yi∗ = [1,−, 3,−, 2,−]
Fi∗ = [1, 2, 3, 2, 2, 4]

Then y and f are be defined as:

y = [1, 3, 2]
f = [1, 3, 2]

As the loss function is defined on corresponding rows per Equation (4.26), y and f
shall refer to the same row of Y and F in the following description of the per-row loss
functions such that the loss above can be phrased as:

L(F, Y) = ∑
f ,y

l(f , y) (4.27)

This notation facilitates the discussion of the row based loss functions in a more con-
cise and elegant form.

4.4.3 A faster Ordinal Regression Loss Function

In this section, we first introduce the ORDINAL REGRESSION LOSS FUNCTION as well
as the state-of-the-art algorithm for its computation. In the second part, we present a
faster algorithm for its computation.

The most straight forward view on the ranking problem is that of pair-wise sorting:
A prediction is correct if it sorts all pairs of entries in f in the same way as they are
sorted in y. For each pair where f does not sort them in same way as y, a penalty is
added to the loss term.

80

4.4 Loss Functions

In a more formal way, this loss, which was described in [HGO00] can be described as
follows: For a given pair of entries (u, v) we consider them to be ranked correctly when-
ever yu > yv implies that also fu > fv. A loss of is incurred whenever this implication
does not hold:

lord(f , y) = ∑
yu>yv

C(yu, yv) { fu ≤ fv} (4.28)

Here C(yu, yv) denotes the cost of confusing an entry of yu with one of value yv and
{ fu ≤ fv} is a comparator function:

{ fu ≤ fv} =

{
1 fu ≤ fv

0 otherwise
(4.29)

This comparator function obviously is not convex. Thus, we apply the same soft
margin trick as in the hinge loss function introduced in Section 4.4.1:

lord(f , y) = ∑
yu>yv

C(yu, yv) max(0, 1− fu + fv). (4.30)

If fu is less or equal than fv, the penalty will be at least 1. If fu is bigger than fv,
the penalty will be at most 1 and it vanishes for values of fu that are greater or equal
than fv + 1. Thus, the step in the original comparator { fu ≤ fv} is replaced by a linear
increase in the loss value around the comparison boundary.

Finally, the value of the loss as defined now is also determined by the number of
entries in y. This clearly is an undesirable property, as the loss value on different rows
of the matrices Y and F is now no longer comparable. Thus, the loss function needs to
be normalized by the number of terms in the sum.

Assume that y is of length m containing m j entries of value j, that is ∑ j m j = m.
There are m2 comparisons possible between m entries. However, comparisons between
entries with equal value don’t fulfill the comparison, hence we need to subtract these
∑ j m2

j comparisons. Finally, only half of the comparisons are true. Thus, the number of
terms in the sum can be computed as:

s =
1
2

[
m2 −∑

j
m2

j

]
(4.31)

Plugging this constant s into the loss formulation in equation (4.30) yields the follow-
ing normalized and convex differentiable ordinal regression loss function:

lord(f , y) =
1
s ∑

yu>yv

C(yu, yv) max(0, 1− fu + fv). (4.32)

81

4 Generalized Matrix Factorization

Computing the gradient: Each element of f appears as fu and fv in the loss func-
tion (4.32). In each case, the loss function is a linear function in this fu or fv. This
observation allows us to compute the gradient of the loss function with respect to f in
a straight forward fashion:

[
∂ f lord(f , y)

]
i =

1
s

(
∑

(yu>yi)∧(fu≤ fi)
C(yu, yi)− ∑

(yi>yv)∧(fi≤ fv)
C(yi, yv)

)
(4.33)

Runtime Performance: Computing the loss involves iterating over all pairs of ele-
ments in y and f . Thus, it is a computation of complexity O

(
m2), with m being the

length of y. The computation of the gradient, if naively implemented following Equa-
tion (4.33), would be a O

(
m3) operation, as the computation iterates over all m2 pairs

for all m entries in f . However, both the computation of the loss and the gradient can
be folded into one O

(
m2) operation as shown in Algorithm 4.4.3.

Algorithm 1 Computation of the ordinal regression loss lord(f , y) and its gradient
∂ f lord(f , y) in O

(
m2) time.

input Vectors f and y score matrix C
output Loss l := l(f , y) and gradient g := ∂ f l(f , y)
m = length(y)
m j = Number of elements of value j in y

n = 1
2

[
m2 − ∑ j m2

j

]
set l := 0
set g := 0
for i = 1 to m do

for j = 1 to m do
if yi < y j ∧ fi ≥ f j then

l = l + Cyi ,y j (1 + fi − f j)
gi = gi + Cyi ,y j

g j = g j − Cyi ,y j

end if
end for

end for
l = l/n
g = g/n
return l,g

82

4.4 Loss Functions

1 1-1 111

1 1-1 111

1 1-1 111

1 1-1 111

count(1) = 5

count(1) = 4

count(1) = 3

loss += count(1)=3

1 1-1 111 …

Y
 sorted by F

Figure 4.2: The fast procedure to compute the ordinal regression loss.

Fast Ordinal Regression

In many real world recommender systems, an algorithm that scales quadratic in the
number of items is unacceptable. These systems often have millions, sometimes hun-
dreds of millions of users and in the order of hundreds of thousands of items. For
example, the subset of the data released by Netflix, a commercial movie rental ser-
vice, as part of the Netflix Prize consists of data about more than seventeen thousand
movies and roughly half a million users. When learning to order artifact elements for
an instance of the Machine Teaching approach, a quadratic algorithm might be a major
hurdle when delivering real time predictions to the learner.

Therefore, this section presents a novel algorithm to compute the ordinal regression
loss and its gradient that overcomes this limitation. Its time complexity will be shown
to scale in O (m log (m)) of the input length y, which presents a major increase in per-
formance over the state-of-the-art. First, an intuitive explanation and visualization of
the main idea of the new algorithm will be given. This is followed by the presentation
of the actual algorithm in more formal terms.

Intuition: Given y and f , one can copy y as z. This vector z is then ordered by the
order induced by sorting f . This is can be done in O (m log (m)) time. Additionally,
the number of elements with value j in y, denoted my m j can be computed in one
linear sweep over y. Given the results of both of these operations, the loss value can be
computed in a single pass over z my decreasing m j for each visited element in z. The
counters m j for entries smaller than the current one should all be 0. If not, their sum is
added to the loss value. The main computational cost of this procedure is the sorting of
f . Thus, the whole process takes O (m log (m)) time.

Figure 4.2 visualizes this intuition for only two possible labels in y, T = {−1, 1}.
First, we compute the number of elements with rating 1 as count(1). Then, in one pass
over the data, we decrease count(1) if the current value is 1. If it is −1, we know that
this −1 is part of count(1) wrong orderings in f . Thus, we can increase the loss value
accordingly. This idea was first presented in [Joa06].

83

4 Generalized Matrix Factorization

Algorithm: This observation is used to form the novel Algorithm 4.4.3. Note that
the first loop, beginning in line 5, would be sufficient to compute the loss, but not the
gradient. It follows from the gradient in Equation (4.33) that each element in f appears
twice in the sums: Once for potentially being too big, and once for being potentially too
small in each comparison. The second loop, beginning in line 13, thus computes the
remaining contributions to the gradient.

The main computational cost stems from line 3, where the argsort of f is computed,
a O (m log (m)) operation. The two following loops, are both linear in m and do not
change the complexity of the algorithm. Thus, Algorithm 4.4.3 is of time complexity
O (m log (m)).

Algorithm 2 Computation of the ordinal regression loss lord(f , y) and its gradient
∂ f lord(f , y) in O (m log m) time

1: input Vectors f and y ∈ {1, ..., ẑ} score matrix C
2: output Loss l := l(f , y) and gradient g := ∂ f l(f , y)
3: Initialize l := 0, g := 0, m := length(y), p := argsort(f)

// Test for items placed too early:
4: m j := Number of elements of value j in y
5: for i = 1 to m do
6: z := yp[i], mz := mz − 1
7: for k := 1 to z− 1 do
8: l := l + mkC(z, k)
9: gp[i] := gp[i] + mkC (z, k)

10: end for
11: end for

// Test for items placed too late:
12: m j := Number of elements of value j in y
13: for i := m to 1 do
14: z := yp[i], mz =: mz − 1
15: for k := z + 1 to max(z) do
16: gp[i] := gp[i] −mkC (z, k)
17: end for
18: end for

// Normalization:
19: s := 1

2

[
m2 − ∑ j m2

j

]
20: return l

s , g
s

84

4.4 Loss Functions

Conclusion: The presented algorithm presents a significant improvement in run-time
complexity. Therefore, the use of the logistic regression loss function is now possible in
areas where the problem size prohibited to do so before.

4.4.4 An NDCG Loss Function for Matrix Factorization

In many scenarios where a ranking is ultimately sought from the recommender system,
ranking measures are used to evaluate the ranking performance of the system, given
known rankings given by the user. These measures are formed based on an under-
standing of what a good ranking is in the specific domain. One common paradigm in
these ranking measures is a weight decay of the ranking importance: Elements ranked
highly are more important than elements ranked low on the final list. This follows the
observation that users are only willing to consider a certain number of items on a list
presented to them and that they scan the list from the top.

In this section, a novel ranking loss function based on one measure, namely the Nor-
malized Discounted Cumulative Gain (NDCG) is introduced. First, the measure itself
is described and some important properties are discussed. In the second part of this
section, the conversion of this measure to a loss function as well as a convex upper
bound on it will be introduced. Finally, the equations for computing its gradient are
derived.

Notation

In order to define this measure, several notations need to be introduced. Throughout
this section, subscripts (e. g. ai) and array notation (e. g. a[i]) are used interchangeably
to allow for a clear and concise presentation.

Definition 12 (Permutation Vector). A PERMUTATION VECTOR π is a vector which con-
tains the indices of another vector, here denoted by a. If the vector a is permuted by π , π [i] is
the index of the element in a that appears at position i after the permutation.

Example 8. πs is a permutation that sorts a decreasingly. Then, the following is true:

a[[πs[i]] ≥ a[πs[i + 1]]∀i ∈ {0 . . . n− 2}

aπ shall denote the vector a, permuted by π such that the following is true:

aπ [i] = a[π [i]] ∀a, π

The NDCG measure:

The Normalized Discounted Cumulative Gain (NDCG) is a measure commonly used
in Information Retrieval settings to evaluate the ranking performance of a retrieval
system [Voo01]. It is appropriate to evaluate recommender systems, too, as the rec-
ommender system will retrieve a set of items, given the user as a query. The NDCG

85

4 Generalized Matrix Factorization

★★★★★ ★★★★ ★★★ ★★ ★ ∑

44.72 13.65 5.05 1.86 0.56 65.84

Perfect permutation

Contribution to the DCG

★★★ ★★★★ ★★★★★ ★★ ★ ∑

10.10 13.65 22.36 1.86 0.56 48.53

First wrong

Contribution to the DCG

★★★★★ ★★★★ ★ ★★ ★★★ ∑

44.72 13.65 0.72 1.86 3.91 64.85

Last wrong

Contribution to the DCG

Figure 4.3: Visualization of the sensitivity of DCG to different errors. Note that the
“perfect permutation” might not always be obtainable in real data due to
ties.

formulation is based on the following desirable properties for a performance measure
in this context:

• Mistakes at the beginning of the ranked list shall be punished more than those at
the end of the list. More formally, there should be decay of the loss induced over
the length of the list.

• The users of a real system are only willing to consider k items, typically in the
order of 10. Thus, the measure has a cutoff parameter, after which mistakes are
not considered any more.

• The measure shall be independent of the type T of y.

Based on these informal requirements, the DCG and subsequently the NDCG can be
defined:

Definition 13 (DCG). The DISCOUNTED CUMULATIVE GAIN (DCG) with cut-off k is
defined on a sequence y and a permutation π and can be computed as:

DCG(y, k, π) =
k−1

∑
i=0

2yπ [i] − 1
log2(i + 2)

(4.34)

Equation (4.34) is maximized for a permutation πs that sorts y decreasingly. The
denominator assures that small values at the beginning and large values at the end of
yπ are yielding little gain. The sum in the numerator of Equation (4.34) runs over k and
thus removes the influence of elements permuted to positions after k.

86

4.4 Loss Functions

Example 9. Figure 4.3 shows three computations of the DCG. The first row depicts the perfect
permutation. The second row shows that an error in the first half of the permutation has a
stronger influence on the outcome as the error shown in the last row that occurred in the second
half of the permuted list.

However, the formulation of the DCG is not invariant to scaling y. In fact, DCG(l ∗
y, k, π) = l ∗ DCG(y, k, π). Thus, predictions for users who prefer to rate items highly
will be evaluated better than those who rate items using lower labels. To overcome this,
the Normalized DCG (NDCG) is introduced:

Definition 14. The NORMALIZED DISCOUNTED CUMULATIVE GAIN (NDCG) of a vector
y, permutation π and cutoff k is defined as:

NDCG(y, k, π) =
DCG(y, k, π)
DCG(y, k, πs)

(4.35)

where πs is the permutation which sorts Y decreasingly.

The NDCG is maximized for the permutation π that sorts y decreasingly. Addition-
ally, the NDCG is bounded between 0.0 and 1.0. Thus, the NDCG fulfills the last of the
desirable properties outlined above.

Construction of a convex loss function for NDCG

The remainder of this section shows how to derive a convex differentiable loss function
from the NDCG in Equation (4.35). This derivation draws inspiration from [TJHA05,
TGK04] and is presented in the following steps:

1. Conversion of the gain NDCG into a loss.

2. Construction of a convex upper bound on the so-found loss function.

Finally, it is shown how to compute the loss function value and its gradient by reduc-
ing it to a linear assignment problem.

Step 1: Loss conversion

To convert the gain function in Equation (4.35) into a loss function, we rely on the fact
that it is bounded from above by 1.0. Thus, the loss function for NDCG for a given
cutoff k can be defined as:

∆(π , y) = 1− NDCG(y, k, π) (4.36)

This loss function assumes the value of 0 for the permutation πs that sorts y decreas-
ingly. Note that this function is not convex in π . In fact, it is piecewise constant.

87

4 Generalized Matrix Factorization

Step 2: Derivation of the upper bound

Definition 15. Let c be a decreasingly sorted, non-negative vector and f be the prediction.
Then we define:

l(f , y, π) = max
π

[∆(π , y) + 〈c, fπ − f 〉] (4.37)

It will now be shown that l(f , y, π) as defined in Equation (4.37) is a convex upper
bound on ∆(π , y) (4.36).

Lemma 1. The function (4.37) is convex in f and an upper bound to the loss function (4.36).

Proof. The proof is done in two phases. First, the convexity of (4.37) in f is shown.
Second, the fact that (4.37) is an upper bound to (4.36) is proven.

Convexity: The argument of the maximization over the permutations π is linear and
thus a convex function in f . Taking the maximum over a set of convex functions
is convex itself, which proves the first claim.

Upper Bound: In order to proof that (4.37) is an upper bound to (4.36), we apply the
insight that the inner product between two vectors is maximized if both vectors
are sorted by the same criterion.

Let π∗ := argsort(− f) be the ranking induced by f and c be a decreasingly
sorted, non negative vector. To see that it is an upper bound, we use the fact
that

l(f , y) ≥ ∆(π∗, y) + 〈c, fπ∗ − f 〉 ≥ ∆(π∗, y). (4.38)

The second inequality follows from the fact that π∗ maximizes 〈c, fπ∗〉 by the
Polya-Littlewood-Hardy inequality.

Thus, it can be concluded that (4.37) is convex in f and an upper bound to the loss
function (4.36), which proofs the claim.

Step 3: Derivation of the gradient

For optimization purposes, the gradient of l(f , y, π) with respect to f needs to be de-
rived. The fist step in this derivation is based upon the fact that the gradient is defined
on the maximizer π̄ of l(f , y, π):

∂ f l(f , y, π) = ∂ f max
π

[∆(π , y) + 〈c, fπ − f 〉]

= ∂ f 〈c, fπ̄ − f 〉+ ∂ f ∆(π̄ , y)
= ∂ f 〈c, fπ̄ − f 〉+ 0
= ∂ f 〈c, fπ̄ − f 〉

88

4.4 Loss Functions

The sum in the inner product can be decomposed, leaving us with:

∂ f 〈c, fπ̄ − f 〉 = ∂ f 〈c, fπ̄ 〉 − ∂ f 〈c, f 〉
= ∂ f 〈c, fπ̄ 〉 − c

To solve the gradient ∂ f 〈c, fπ̄ 〉, we use the insight that 〈a, bπ 〉 = 〈aπ−1 , b〉, where π−1

denotes the inverse permutation to π :

∂ f 〈c, fπ̄ − f 〉 = ∂ f 〈cπ̄−1 , f 〉 − c
= cπ̄−1 − c

Therefore, we can compute the final gradient as:

∂ f l(f , y, π) = cπ̄−1 − c (4.39)

Computation of the loss

Computing the value of the loss function (4.37) and its gradient (4.39) is a challenge,
as the maximizing permutation π̄ is needed which in worst case may mean that all
possible permutations have to be considered. Below, it is shown that the solution for
this maximization can be found by solving a linear assignment problem with a cost
matrix specific to this problem.

Lemma 2. The solution of Equation (4.37) can be found by solving the following linear assign-
ment problem:

min ∑
i

∑
j

Ci, j ∗ Xi, j

subject to:

∑
i

Xi, j = 1 ∀ j

∑
j

Xi, j = 1 ∀i

Xi, j ≥ 0 ∀i, j

with a cost matrix:

Ci, j = κi
2y[j] − 1

DCG(y, k, πs)log2(i + 2)
− ci f j

The solution to the linear assignment problem is integral, as the constraint matrix X is totally
unimodular. This means that Xi, j is either 1 or 0 for all i, j. Thus, we can transform the solution
X back into a permutation π by setting π [i] = the j for which Xi, j is 1. This π is the solution
to Equation (4.37).

89

4 Generalized Matrix Factorization

Proof. Recall

l(f , y, π) = max
π

[∆(π , y) + 〈c, fπ − f 〉] (4.40)

where ∆(π , y) = 1− NDCG(y, k, π) for some arbitrary but fixed k. f is the current
prediction and fπ is the current prediction permuted by π . Using this notation, the
following derivations are possible:

l(f , y, π) = max
π

[1− NDCG(y, k, π) + 〈c, fπ − f 〉]

= max
π

[〈c, fπ − f 〉 − NDCG(y, k, π)] + 1

= max
π

[〈c, fπ 〉 − NDCG(y, k, π)] + 1− 〈c, f 〉

= max
π

[
〈c, fπ 〉 −

DCG(y, k, π)
DCG(y, k, πs)

]
+ 1− 〈c, f 〉

The π which maximizes this equation also maximizes the following one, as 1− 〈c, f 〉
are independent of π :

max
π

[
〈c, fπ 〉 −

DCG(y, k, π)
DCG(y, k, πs)

]
= max

π

[
〈c, fπ 〉 −

1
DCG(y, k, πs)

k−1

∑
i=0

2y[π [i]] − 1
log2(i + 2)

]

= max
π

[
〈c, fπ 〉 −

k−1

∑
i=0

1
DCG(y, k, πs)

2y[π [i]] − 1
log2(i + 2)

]

= max
π

[
〈c, fπ 〉 −

2y[π [i]] − 1
DCG(y, k, πs)log2(i + 2)

]

Defining

Xi, j =

{
1 if π [i] = j,
0 otherwise

and κi =

{
1 if i < k,
0 otherwise

allows us the following reformulation:

90

4.4 Loss Functions

max
π

[
〈c, fπ 〉 −

k−1

∑
i=0

2y[π [i]] − 1
DCG(y, k, πs)log2(i + 2)

]

= max
X

[
∑

i
∑

j
ci f jXi, j −∑

j

k−1

∑
i=0

Xi, j
2y[j] − 1

DCG(y, k, πs)log2(i + 2)

]

= max
X

[
∑

i
∑

j
ci f jXi, j −∑

i
∑

j
κi

Xi, j(2y[j] − 1)
DCG(y, k, πs)log2(i + 2)

]

= max
X

[
∑

i
∑

j
ci f jXi, j −κi

Xi, j(2y[j] − 1)
DCG(y, k, πs)log2(i + 2)

]

= max
X

[
∑

i
∑

j
Xi, j(ci f j −κi

2y[j] − 1
DCG(y, k, πs)log2(i + 2)

]

Thus, the problem can be solved using the following linear assignment problem for-
mulation:

min ∑
i

∑
j

Ci, j ∗ Xi, j

subject to:

∑
i

Xi, j = 1 ∀ j

∑
j

Xi, j = 1 ∀i

Xi, j ≥ 0 ∀i, j

with:

Ci, j = −
(

ci f j −κi
2y[j] − 1

DCG(y, k, πs)log2(i + 2)

)

= κi
2y[j] − 1

DCG(y, k, πs)log2(i + 2)
− ci f j

The solution to this linear assignment problem is integral, Xi, j is either 1 or 0 for all
i, j. Thus, we can transform the solution X back into a permutation π by setting π [i] =
the j for which Xi, j is 1. Using this permutationπ , the value of Equation (4.37) can be
computed, which proofs the claim.

91

4 Generalized Matrix Factorization

4.4.5 Conclusion

In this section, we presented several choices regarding the loss function to be used.
In addition to transferring some well-known element based loss functions from su-
pervised machine learning to matrix factorization, we introduced the concept of row
based loss functions. Two loss functions have been discussed in this context: We de-
rived a faster algorithm for the computation of the ordinal regression loss function and
developed a loss function which can be used to directly optimize the prediction for the
NDCG evaluation measure.

We did not yet, however, present how to actually optimize the objective function (4.8).
The next section presents an optimization procedure to do so.

4.5 Optimization

Now that suitable choices for the loss function have been discussed, the only part of a
working matrix factorization algorithm which we did not present yet is the optimiza-
tion procedure used to minimize the objective function (4.8).

This procedure is described in this section. As briefly mentioned when introducing
the loss functions above, we assume the loss function to be convex and differentiable
in f , or at least sub-differentiable. However, this assumption does not guarantee that
the objective function (4.8) is jointly convex in C and R. In fact, the contrary is true:
Equation (4.8) is not jointly convex in C and R:

Lemma 3. Equation (4.8) is not guaranteed to be jointly convex in C and R.

Proof. Let us assume a very simple case of Matrix Factorization: C, R ∈ R1 and the least
squares loss function. Then, the loss function becomes:

L(F, Y) = ((F)−Y)2 = (RC>)2 − 2RC>Y + Y2

A function is convex if its hessian is positive semi-definite. The hessian of this loss
can be computed based on the following partial derivatives:

LU(F, Y) = 2RC>2 − 2C>Y
LM(F, Y) = 2R2C> − 2RY

LUU(F, Y) = 2C>2

LMM(F, Y) = 2R2

LUM(F, Y) = 4RC> − 2Y
LMU(F, Y) = 4RC> − 2Y

This leads to the following hessian:

H = 2
(

C>2 2RC> −Y
2RC> −Y R2

)

92

4.5 Optimization

If H is were semi-definite, the function L was jointly convex in R and C. A matrix is
positive semi-definite if its determinant is positive. However, the determinant of H is:

det(H) = 2(C>2R2 − (2RC> −Y)2)
= 2(C>2R2 − 4R2C>2 + 4RC>Y−Y2)
= 2(−3R2C>2 + 4RC>Y−Y2)
= 8RC>Y− 6R2C>2 − 2Y2

It is easy to see that for every fixed Y, there will be R and C such that 6R2C>2 will
be bigger than 8RC>Y which renders the determinant negative. Thus, the objective
function (4.8) is not guaranteed to be jointly convex in R and C for a simple special
case, which proofs the claim.

Efficient optimization of non-convex functions is challenging and multiple differ-
ent approaches such as Stochastic Gradient Descent [Bot04], Semi-Definite Program-
ming [SRJ05] and Subspace Gradient Descent [RS05] have been proposed to find the
solution for factor models. Semi-Definite Programming as described in [RS05] is theo-
retically the most elegant solution, as it is guaranteed to find a globally optimal solu-
tion. However, the computational requirements of doing so a prohibitive for all but the
smallest problems.

The Stochastic Gradient Descent methods are computationally elegant as they can
be implemented in an online algorithm that optimizes in multiple linear sweeps over
the data. However, they are based on the assumption of a per-element loss function
which, for the reasons outlined above, is not desirable in the Machine Teaching and
some important Recommender Systems scenarios.

Thus, an algorithm based on Subspace Gradient Descent is presented here. The key
insight behind Subspace Gradient Descent is the fact that the objective function (4.8) is
convex in C if R is kept fixed and convex in R if C is kept fixed. Thus, we can optimize
by alternating between optimization steps over R and C as shown in Algorithm 3.

Algorithm 3 Alternate Subspace Descent for Matrix Factorization
Initialize R and C randomly
repeat

For fixed C minimize (4.8) with respect to R.
For fixed R minimize (4.8) with respect to C.

until no more progress is made or a maximum iteration count is reached.

Note that as the overall optimization problem is still non-convex this procedure can-
not be guaranteed to converge to a global optimum. However, experimental evalu-
ations show that an implementation of this procedure consistently finds solutions of
equal quality, if not the same solution when minimizing the objective function on the
same data set but different random initializations of R and C.

93

4 Generalized Matrix Factorization

Figure 4.4: A convex function (solid) is bounded from below by Taylor approximations
of first order (dashed). Adding more terms improves the bound.

Both the optimization steps in Algorithm 3 are convex and thus amenable to a wide
range of optimization algorithms for convex problems such as the well known LBFGS
algorithm[NW99, YVGS08]. However, these methods are guaranteed to converge within
1
ε2 steps at best to a solution that is within ε of the minimum.

Recently, bundle methods have been introduced with promising results for optimiz-
ing regularized risk functions in supervised machine learning. Bundle Methods have
been shown to converge within 1

ε
steps [SVL08]. This makes them especially suitable

to the optimization problem at hand. Each step of the optimization algorithms requires
a loss and gradient computation. As we have shown above, this can be a costly oper-
ation, especially for losses like NDCG and others following the structured estimation
framework [TJHA05].

The key idea behind bundle methods is to compute successively improving linear
lower bounds of an objective function through first order Taylor approximations as
shown in Figure 4.4. Several lower bounds from previous iterations are bundled in or-
der to gain more information on the global behavior of the function. The minimum of
these lower bounds is then used as a new location where to compute the next approxi-
mation, which leads to increasingly tighter bounds and convergence.

Gradient Computation: The main computational cost in using any gradient based
solver is the computation of the gradients with respect to R and C. Using the chain rule
yields

∂CL(F, Y) = ∂FL(F, Y)R′ (4.41)
∂RL(F, Y) = [∂FL(F, Y)]′ C. (4.42)

By definition, the loss functions discussed in this thesis are decomposable per row
of F. Thus, the computation of ∂FL(F, Y) decomposes per row, too. This observation
facilitates a straight forward parallel implementation of this computation.

94

4.5 Optimization

4.5.1 Optimization over the Row Matrix R

The same observation can be applied to the optimization of (4.8) over R for a fixed C.
Not only does the loss function decompose per row, but so does the Frobenius norm
used as the regularizer. Thus, the optimization over R decomposes into r convex opti-
mization problems, one per row of Y and F. This observation is used in Algorithm 4 to
form an efficient optimization procedure for the first step in Algorithm 3, the optimiza-
tion over R. Note that in fact, each of the per-row optimization problems is a standard
regularized risk minimization problem as discussed in the supervised machine learn-
ing literature. Example: When choosing the Hinge loss function, the problem is exactly
that of a linear support vector machine.

Algorithm 4 Optimization over R with fixed C
input Parameter matrices R and C, data matrix Y
output Matrix R
for i = 1 to r do

Select idx as the nonzero set of Yi∗
Initialize w = Ri∗
Ri,idx = argminw l(wCidx,∗, Yi,idx) + λr

2 ‖w‖
2

end for

4.5.2 Optimization over the Row Matrix C

The optimization over C is not amenable to the same treatment, as the loss function,
by design, does not decompose per column of Y and F. Thus, the complete gradient
and loss over C needs to be computed. As introduced earlier, the computations of the
loss value and its gradient with respect to F can still be decomposed per row. The main
computational bottleneck then becomes the final multiplication to compute:

∂CL(F, Y) = R′∂FL(F, Y) (4.43)

This formulation, if implemented naively, poses a serious challenge regarding the
memory consumption. Recall that ∂FL(F, Y) is of the same size of F and that the lat-
ter is never constructed in memory, as it is too large in many Recommender Systems
instances which have millions of rows (users) and thousands of columns (items). There-
fore, the construction of ∂FL(F, Y) in memory should also be avoided.

However, special care can be taken when implementing this multiplication to re-
duce the memory consumption of this procedure by iteratively computing the entries
of ∂CL(F, Y) in one pass over all rows of F and Y. Algorithm 5 is build upon this notion.

95

4 Generalized Matrix Factorization

Algorithm 5 Efficient computation of ∂CL
input Parameter matrices R and C, data matrix Y
output Gradient of the loss function L w.r.t C: ∂CL
initialize with 0: ∂CL← 0c×d

for i = 1 to r do
Find index idx where Yi∗ 6= 0
D← ∂FL(Ri∗C′idx,∗, Yi,idx)
∂CL← ∂CL + R′D

end for
return ∂CL

4.5.3 New Row Optimization

In many scenarios, the system needs to react to new lines in Y. In Recommender Sys-
tems, these new lines correspond to new users joining the system. In Machine Teaching,
new lines in Y are the default case: Each new line in Y corresponds to a new, partially
finished artifact. The system is then asked to perform predictions on this partial artifact
to support the learner.

For a large number of rows present in Y, one more is likely to have little influence on
C. Additionally, the optimization with respect to R decomposes per row of Y. These
observations enable minimizing the objective function (4.8) with respect to this one new
row in Y for a fixed C in order to obtain a new row in R and thus a prediction for this
new row.

Note that this is similar to the regularized risk minimization formulation of super-
vised machine learning. The main difference is that the known features of the super-
vised scenario, typically denoted by X, are replaced here with the learned features of the
columns contained in C.

4.6 Extensions to the Regularized Matrix Factorization Model

Given the previous sections, a matrix factorization model can be constructed for many
Machine Teaching and Recommender Systems scenarios. In this section, several exten-
sions to this model are introduced that facilitate better prediction performance. It is also
discussed how to integrate these extensions to the optimization procedure described in
Section 4.5.

4.6.1 Row and Column Biases

Each row and each column of Y may carry an individual bias. In Recommender Sys-
tems, this bias may be the result of the individual user’s rating habits for the rows.
The columns may be biased by a universal quality associated with a certain item. For
instance, ’Plan 9 from Outer Space’ will probably not attract lots of high ratings while
other movies may prove universally popular. Similar biases are conceivable in Machine

96

4.6 Extensions to the Regularized Matrix Factorization Model

Teaching scenarios where a certain structure element value almost always is around a
specific value. That value may then be used as the offset in the sense of this extension.

Biases like this can be introduced into the model by expanding the prediction func-
tion from Equation (4.1) with two more terms: The row bias ri and the column bias c j:
This can be taken into account by means of an offset per movie. This can be incorpo-
rated via

Fi, j =
〈

Ri∗, C j∗
〉

+ ri + c j. (4.44)

Incorporation of these bias terms into the optimization procedure is done by extend-
ing R and C by two columns each: One for the bias vector, and one with a constant
value of 1.

In this form no algorithmic modification for the R and C optimization is needed. The
computational cost of this extension can be neglected, as the number of factors d is
increased by only 2.

Note that this offset is different from a simple normalization of the input data and
is not meant to replace pre-processing procedures altogether. The offset is learned for
the loss function in use and for each row and column, while it would be tricky to find a
normalization that does cater for both appropriately at the same time.

4.6.2 Adaptive Regularization

In many cases, the rows and columns of Y are not evenly filled. In a movie recom-
mender scenario, some users rated thousands of movies while others only a few. Thus,
a universal regularization parameter for all these rows is not advisable, as rows with
many entries should be allowed a more ’complicated’ model than those with only a
few. The same argument holds for the columns in Y. For example in a Coding Machine
Teaching System where some methods are universally popular and thus get called of-
ten.

Those issues can be dealt with by sample-size adaptive regularization for both columns
and rows. Denote by Dr and Dc diagonal matrices corresponding to rows and columns
of Y. Setting Dr

ii = n−α
i and Dr

j j = m−α
j where ni denotes the number of entries in row i

and m j denotes the number of entries in column j, we obtain a sample size dependent
regularizer as follows:

min
U,M

L(F, Y) +
λc

2
tr C>DcC +

λr

2
tr R>DrR.

In our experiments (reported in Chapter 5) we found that α = 0.5 provides best
generalization performance. This is equivalent to the regularization scales provided in
a maximum a posteriori setting where the log-prior is fixed whereas the evidence scales
linearly with the number of observations.

As the computation for this scaling can be done in advance, the computational cost
of the adaptive regularizer is not significant when compared to the overall run time.
The needed statistics can even be pre-computed and reused in many experiments.

97

4 Generalized Matrix Factorization

4.6.3 Structure Exploitation with a Graph Kernel

In many instances, the sheer presence of an entry in the matrix Y carries important
information in addition to the actual value stored at that point in Y, e. g. in the movie
recommender domain. The fact that a user bothered to watch and subsequently rate a
movie is an important piece of information that is genuinely distinct from the numerical
value of the rating given. After all, renting, watching and labeling a movie represents
a substantial effort, which the user presumably only invests into movies she is likely to
like.

Example 10. Knowing that a user rated ’Die Hard’, ’Die Hard 2’, and ’Top Gun’ makes it
likely that this user is interested in action movies.

One would expect that we should be able to take advantage of this structural infor-
mation in addition to the actual scores. One possibility, proposed in [BH04] is to use
the inner product between two rows of Y as a kernel for comparing two different rows.
In this case they define the kernel between the rows i and i′ to be 〈Si∗, Si′∗〉. It is well
known that such a model is equivalent to using a linear model with row-features given
by S.

The main drawback of this approach is that one needs to compute this kernel function
between all users which scales quadratic in their number. Instead, one can use another
formulation which uses the same insight, the importance of the binary aspects of Y
in a computationally more efficient framework. To do so, we introduce an additional
parameter matrix A ∈ Rc×d to replace R with R + SA, which leads to the following
prediction function:

F = (R + SA) C> = RC> + SAC> (4.45)

In this formulation, A controls a mixture of column features to be assigned to each
row. In the movie recommender example above, every user now partially assumes
features of the movie she watched based on the mixing coefficients stored in A. Or, in
other words, the proposed solution is based upon the assumption that “we are what
we watch” up to a level encoded in A. We can optimize over A in a straight-forward
manner by introducing a third step into the subspace descent described in Algorithm 3.

A similar approach has been proposed in [SM08], whereas a row-normalized ver-
sion of S is used. In [WKS08c], it has been shown that all three approaches (the one
presented here, the one in [SM08] and the one in [BH04]) are in fact equivalent.

4.6.4 Row and Column Features

Depending on the application scenario, features of both the rows and the columns may
be available. In a Recommender System, demographic information is often known
about the users and the items can be described by a set of features, too. In [ABEV06],
the integration of features is proposed by defining a kernel between rows and columns
that integrates features. Another way of introducing features is to use them as a prior
for the factors, as studied in [AC09].

98

4.7 Conclusion

Here, we present a integration of features to our matrix factorization framework by
adding several linear supervised learning models: Following common supervised ma-
chine learning notation, the rows of XR ∈ Rr×dR shall contain the dR feature vectors for
the rows of Y. The rows of XC ∈ Rc×dC contain those dC features of the columns of Y.

Using these two new matrices, the prediction function from Equation (4.1) can be
extended to use column features:

Fi, j =
〈

Ri∗, C j∗
〉

+
〈

WR
i∗, XC

j∗

〉
(4.46)

Here, WR ∈ Rr×dC is a matrix whose rows are the weight vectors for the column
features per row. The very same idea can be applied to row features as well:

Fi, j =
〈

Ri∗, C j∗
〉

+
〈

WR
i∗, XC

j∗

〉
+
〈

WC
i∗, XR

j∗

〉
(4.47)

The matrix WM ∈ Rc×dU encodes the weight vector for each column.
As with the offsets, the features can be integrated into the algorithmic procedure

described above without any changes. To do so, one would extend C with the features
from XC, R with the features from XR. These new entries are masked from optimization
and regularization such that their value stays fixed.

To learn the parameters, R is extended by WR and C by WC. The optimization over R
and C includes these new entries. This yields the parameter vectors WR and WC. Please
note that the Frobenius norm decomposes per entry in R and C. Thus, the newly in-
troduced parameters are regularized as if there would be a L2 norm imposed on them.
This essentially recovers a regularized risk minimization problem for these weight vec-
tors.

4.7 Conclusion

In this chapter, a generalized matrix factorization model and algorithm has been pre-
sented. As shown at the beginning of this chapter (Section 4.1 on page 70), the model
underlying this approach can be applied both to recommender systems and Machine
Teaching applications. The presented approach is a generalization of the state-of-the-art
in several respects.

Regularizer: While this thesis focuses on the Frobenius norm as the model regularizer,
many more choices such as the L1-norm are possible without leaving the frame-
work presented here. The adaptive regularization can be applied to a wide range
of regularizers, too.

Loss Functions: The model and algorithm here can be used with a wide range of loss
functions known in the supervised machine learning community.

Especially notable is the possibility to use non-smooth loss functions due to the
use of the bundle method solver. Even more so, the applicability of matrix factor-
ization to per-row loss functions is a major contribution as it facilitates the opti-
mization of ranking losses in recommender systems. To this end, one novel loss

99

4 Generalized Matrix Factorization

function to directly optimize for the NDCG score and a substantially faster ver-
sion of the ordinal regression loss function have been presented. Per-row losses
also are a crucial ingredient in making matrix factorization a viable method for a
large class of Machine Teaching systems.

Hybrid Approach: The inclusion of features as described above extends matrix factor-
ization to be what is known as a “hybrid recommender system”: One that can use
both the collaborative effect of users interacting on the same set of items as well as
explicitly known features of the users and items. This is an important step in ad-
dressing the new user problem, which, as we have shown earlier, arises naturally
in Machine Teaching.

The graph kernel and the adaptive regularization make it possible to use additional
knowledge embodied in the rating matrix or the matrix representation of an artifact in
the Machine Teaching setting.

The approach presented in this chapter provides a solid base for the construction of
Machine Teaching systems for detailed feedback, as the prediction of suggestions for a
new or changed artifact is fast and, as shall be shown below, very accurate. The wide
range of possible loss functions allow the system to be used in a multitude of Machine
Teaching scenarios and the possibility to use features of the artifact or the structural
elements thereof can further increase this performance.

Next steps in this thesis: Before applying the algorithm in a Detailed Feedback Ma-
chine Teaching approach in Chapter 6, we first evaluate it on well established Recom-
mender Systems data sets to compare its performance to the state-of-the-art in that field
in Chapter 5.

100

5 Evaluation on Recommender Systems Data

Contents
5.1 Evaluation Setup . 102

5.1.1 Evaluation Measures . 102
5.1.2 Evaluation Procedure . 103
5.1.3 Data Sets . 104

5.2 Results and Discussion . 105
5.2.1 Model Extensions . 105
5.2.2 Ranking Losses . 106

5.3 Conclusion . 109

101

5 Evaluation on Recommender Systems Data

5.1 Evaluation Setup

This chapter presents empirical evaluation results of the algorithm discussed so far
in the Recommender Systems scenario before moving on to the application of the al-
gorithm to a Detailed Feedback Machine Learning example in the next chapter. The
reason for evaluating on Recommender Systems data lies in the fact that this field of
research is well established:

• Data sets are readily available.

• The evaluation method including the evaluation measure is widely agreed upon
in the field.

• Thus, it is possible to assess the performance of an algorithm in comparison to the
related work.

Obviously, none of this is true for the Machine Teaching area. The purpose of the
evaluation presented in this chapter therefore is to assure the general performance of
the algorithm before depending upon both – the algorithm and its performance – in
subsequent steps.

Similar to the evaluation presented in Chapter 3, the evaluation is discussed in two
steps: First, the evaluation method including the used measures and the data and the
pre-processing thereof are introduced. The remainder of this chapter then presents
empirical results and their discussion for the two main questions to be evaluated:

1. Do the model extensions proposed in Section 4.6 add to the performance of the
Recommender System?

2. Do the per-row losses improve the ranking performance of the system?

5.1.1 Evaluation Measures

In order to evaluate the predictive performance of the different variants of the model –
rating and ranking prediction – we resort to two evaluation measures.

Rating Performance: Following the majority of the literature, the rating performance
is evaluated with the root mean squared error (RMSE) measure:

RMSE(F, Y) =
1

2n

r

∑
i=0

c

∑
j=0

Si, j(Fi, j −Yi, j)2 (5.1)

Where the binary matrix S indicates whether or not a user rated an item:

Si, j =

{
1 if user i rated item j
0 otherwise

102

5.1 Evaluation Setup

and n is the number of those ratings in Y, e.g.:

n =
r

∑
i=0

c

∑
j=0

Si, j

Ranking Performance: In order to evaluate the ranking performance of the system, we
resort to the Normalized Discounted Cumulative Gain (NDCG) measure as introduced in
Section 4.4.4. The NDCG of a vector y, permutation π and cutoff k is defined as:

NDCG(y, k, π) =
DCG(y, k, π)
DCG(y, k, πs)

(5.2)

The permutation π is computed as the argsort of the predicted values: π = argsort(f).
The perfect permutation πs is the argsort of the true ratings given by the user: πs =
argsort(y). A NDCG of 1.0 indicates that the model sorts the items in the same order as
the user. The parameter k is a cut-off beyond which the actual ranking does no longer
matter. This follows the intuition that typical recommender systems can only present a
limited amount of items to the user. In all our experiments, we evaluated using k = 10,
which is commonly referred to as NDCG@10. We report the average NDCG@10 over
all users below.

5.1.2 Evaluation Procedure

We distinguish two different evaluation scenarios: strong and weak generalization.

Weak generalization: This is the scenario commonly discussed in the literature: For
each user, a number n of ratings is sampled from the known data. The system is
then trained on these ratings and evaluated on the remaining items. We present
results for n = 10, 20, 50. This evaluation resembles a system with an established
user base that recommendations are generated for.

Strong generalization: As discussed earlier, the Machine Teaching scenario is depen-
dent on fast and accurate solutions to what is referred to as the new user problem
in Recommender Systems research: Given a fully trained model, predict for a user
that was not part of the initial training phase of the system.

To simulate this scenario, we follow the procedure suggested in [YYTK06]: Movies
with less than 50 ratings are discarded. The 100 users with the most rated movies
are selected as the test set and the methods are trained on the remaining users. In
evaluation, 10, 20 or 50 ratings are sampled from the test users. We then use these
ratings to learn a new user feature matrix Rstrong by performing a single iteration
of the optimization over R as described in Section 4.5.3. The remaining ratings
are used as the test set.

Note that sampling a small number of ratings for the training set mimics a real world
recommender setting where ratings are very scarce compared to the total number of
movies.

103

5 Evaluation on Recommender Systems Data

Data set Users Movies Ratings Rating Scale
MovieLens 983 1682 100000 1-5 Stars
EachMovie 61265 1623 2811717 1-6 Stars

Netflix 480189 17770 100480507 1-5 Stars

Table 5.1: Data set statistics

In all experiments, the regularization parameters λr and λc were fixed and not for-
mally tuned. The dimension of R and C was set to d = 10 for the evaluation of the
extensions and to d = 100 for the evaluation of the different losses. We did not observe
significant performance fluctuations when comparing the performance of the system
using d = 30 in [SM08]. This is an interesting observation in its own right: The prefer-
ences of a user for movies can be described by a relatively small number (in the order
of 10) of factors.

All experiments were performed ten times with different random draws of the train
and test set from the data sets. In total, we report results from more than 5000 experi-
ments.

5.1.3 Data Sets

Evaluations have been conducted on three data sets that are well known in the recom-
mender systems literature:

MovieLens: The MovieLens data stems from the research movie recommender of the
same name1 of the GroupLens research group2 in the Department of Computer
Science and Engineering at the University of Minnesota.

EachMovie: EachMovie was a recommender run by HP/Compaq Research (formerly
DEC Research). The data set became available when the recommender was shut
down and it has since been used in numerous recommender systems publications.
However, the data set was retired in October 2004 and is since no longer available
for download.

Netflix: The Netflix data set was collected and published by the online movie rental
service Netflix3 as part of their Netflix Prize challenge4.

The data sets are of very different sizes, their descriptive statistics can be found in
table 5.1.

1http://movielens.umn.edu/
2http://www.grouplens.org/
3http://netflix.com
4http://www.netflixprize.com/

104

http://movielens.umn.edu/
http://www.grouplens.org/
http://netflix.com
http://www.netflixprize.com/

5.2 Results and Discussion

Method N=10 N=20 N=50
EachMovie Plain 0.625± 0.000 0.639± 0.000 0.641± 0.000

Offset 0.646± 0.000 0.653± 0.000 0.647± 0.000
GraphKernel 0.583± 0.000 0.585± 0.000 0.590± 0.001
OffsetGK 0.576± 0.000 0.597± 0.000 0.580± 0.001

MovieLens Plain 0.657± 0.000 0.658± 0.000 0.686± 0.000
Offset 0.678± 0.000 0.680± 0.000 0.701± 0.000
GraphKernel 0.624± 0.001 0.644± 0.000 0.682± 0.000
OffsetGK 0.670± 0.001 0.681± 0.000 0.682± 0.000

Table 5.2: The NGDC@10 accuracy over ten runs and the standard deviation for the
weak generalization evaluation.

Method N=10 N=20 N=50
EachMovie Plain 0.859± 0.000 0.731± 0.000 0.627± 0.000

Offset 0.859± 0.000 0.734± 0.000 0.631± 0.000
GraphKernel 0.837± 0.000 0.693± 0.000 0.553± 0.001
OffsetGK 0.832± 0.000 0.689± 0.000 0.587± 0.001
All 0.836± 0.000 0.702± 0.000 0.585± 0.000

MovieLens Plain 0.875± 0.000 0.750± 0.000 0.673± 0.000
Offset 0.886± 0.000 0.764± 0.000 0.703± 0.001
GraphKernel 0.845± 0.000 0.720± 0.001 0.667± 0.000
OffsetGK 0.882± 0.000 0.773± 0.000 0.703± 0.000
All 0.869± 0.000 0.730± 0.002 0.645± 0.005

Table 5.3: The NGDC@10 accuracy over ten runs and the standard deviation for the
inverted weak generalization evaluation.

5.2 Results and Discussion

5.2.1 Model Extensions

To evaluate the model extensions, we performed experiments for each combination of
the extensions as it cannot be guaranteed that the combination of all extensions per-
forms best. As we are interested in the performance of the extensions, all experiments
are done with a single loss function, namely the least squares loss.

Weak generalization: Table 5.2 contains the results of the weak generalization scenario
experiments. We observe that adding the offset terms yields significant improve-
ments in the performance of the model. On the other hand, enabling the Graph
Kernel does not significantly improve performance. This can be attributed to the
fact that the regularization factors were not tuned. Enabling the Graph Kernel
adds a large set of additional parameters to the model which might lead to over-

105

5 Evaluation on Recommender Systems Data

fitting without the adjustment of the regularization parameters. Nonetheless, the
Graph Kernel did add further improvements together with the offsets.

Inverted weak generalization: Note that due to the weak generalization procedure
definition, the adaptive regularization extension cannot have an influence, as all
experiments are done on 10, 20 or 50 movies per user. Thus, we use the same data
set split reversed for evaluating the adaptive regularizer: For each user, 10, 20 or
50 movies are used as the test set, with all the remaining movies being the training
set.

The results of this set of experiments can be found in Table 5.3. They again confirm
our observations in the previous setting. The offset term combined with the graph
kernel brings significant performance gains.

Strong generalization: For the strong generalization setting, the matrix factorization
models were compared to Gaussian Process Ordinal Regression (GPOR) [CG05]
Gaussian Process Regression (GPR), their collaborative extensions (CPR, CGPOR)
as well as the original MMMF implementation [YYTK06]. Table 5.4 shows the
results for the generalized MMMF models compared to the ones from [YYTK06].

For the Movielens data, the model with the offset and graph kernel extensions
outperforms the other systems. Additionally, the system with both extensions
performs consistently better than the ones with only one extension. On the Each-
Movie data, the model performs the best with the offset extension enabled. It
appears that the Graph Kernel in the EachMovie data set does not improve the
performance but again this could be attributed to a poor choice of the regulariza-
tion parameters for this data set.

The matrix factorization model performance is particularly convincing in the strong
evaluation setting. This is especially notable as the systems we compare to do use
external features of the movies. These features can be obtained by crawling the
Internet Movie Database (IMDB) for information on these movies.

The good performance of the matrix factorization model can be attributed to the
fact that the system performs alternate convex optimization steps over item and
user features. Once a “good” set of item features is obtained, there is reason to be-
lieve that it is a good representation of the items, even for new users. We believe
that this is an important benefit of matrix factorization models in many applica-
tions, as it enables fast accurate predictions for new users without the need to
retrain the whole system.

5.2.2 Ranking Losses

To compare the performance of the different loss functions, the system was trained
without the extensions to facilitate the analysis of the loss function’s impact in isolation.
Experiments were performed with the NDCG, Ordinal Regression and Least Squares

106

5.2 Results and Discussion

Method N=10 N=20 N=50
EachMovie Plain 0.615± 0.000 0.633± 0.000 0.636± 0.000

Offset 0.641± 0.000 0.647± 0.000 0.644± 0.000
GraphKernel 0.574± 0.000 0.581± 0.000 0.596± 0.000
OffsetGK 0.568± 0.000 0.594± 0.000 0.579± 0.000
GPR 0.4558± 0.015 0.4849± 0.0066 0.5375± 0.0089
CGPR 0.5734± 0.014 0.5989± 0.0118 0.6341± 0.0114
GPOR 0.3692± 0.002 0.3678± 0.0030 0.3663± 0.0024
CGPOR 0.3789± 0.011 0.3781± 0.0056 0.3774± 0.0041
MMMF 0.4746± 0.034 0.4786± 0.0139 0.5478± 0.0211

MovieLens Plain 0.587± 0.001 0.644± 0.001 0.630± 0.001
Offset 0.583± 0.000 0.444± 0.000 0.690± 0.000
GraphKernel 0.613± 0.000 0.634± 0.000 0.637± 0.001
OffsetGK 0.684± 0.000 0.691± 0.000 0.692± 0.000
GPR 0.4937± 0.0108 0.5020± 0.0089 0.5088± 0.0141
CGPR 0.5101± 0.0081 0.5249± 0.0073 0.5438± 0.0063
GPOR 0.4988± 0.0035 0.5004± 0.0046 0.5011± 0.0051
CGPOR 0.5053± 0.0047 0.5089± 0.0044 0.5049± 0.0035
MMMF 0.5521± 0.0183 0.6133± 0.0180 0.6651± 0.0190

Table 5.4: The NGDC@10 accuracy over ten runs and the standard deviation for the
strong generalization evaluation.

Regression loss functions. In addition, we also report results obtained with the original
MATLAB implementation of the MMMF model where possible5.

Weak generalization: Table 5.5 contains the results of the experiments. The Ordinal Re-
gression loss performs best overall with some exceptions where the Least Squares
Regression Loss performs slightly better.

Strong generalization For the strong generalization setting, the NDCG scores are com-
pared to those reported in [YYTK06] (table 5.6).

The model with the NDCG loss performs strongly compared to most of the other
tested methods. Particularly in the strong generalization setting, it outperforms
the existing methods in almost all of the settings. Again, note that all methods
except MMMF use additional extracted features which are either provided with
the data set or extracted from the IMDB.

5The implementation did not scale to the bigger data sets EachMovie and Netflix.

107

5 Evaluation on Recommender Systems Data

Method N=10 N=20 N=50
EachMovie NDCG 0.6562± 0.0012 0.6644± 0.0024 0.6406± 0.0040

Ordinal 0.6727± 0.0309 0.7240± 0.0018 0.7214± 0.0076
Regression 0.6114± 0.0217 0.6400± 0.0354 0.5693± 0.0428

MovieLens NDCG 0.6400± 0.0061 0.6307± 0.0062 0.6076± 0.0077
Ordinal 0.6233± 0.0039 0.6686± 0.0058 0.7169± 0.0059
Regression 0.6420± 0.0252 0.6509± 0.0190 0.6584± 0.0187
MMMF 0.6061± 0.0037 0.6937± 0.0039 0.6989± 0.0051

Netflix NDCG 0.6081 0.6204
Regression 0.6082 0.6287

Table 5.5: Results for the weak generalization experiments. We report the NDCG@10 accuracy
for various numbers of training ratings used per user. For most results, we report
the mean over ten runs and the standard deviation. We also report the p-values for
the best vs. second best score.

Method N=10 N=20 N=50
EachMovie NDCG 0.6367± 0.001 0.6619± 0.0022 0.6771± 0.0019

GPR 0.4558± 0.015 0.4849± 0.0066 0.5375± 0.0089
CGPR 0.5734± 0.014 0.5989± 0.0118 0.6341± 0.0114
GPOR 0.3692± 0.002 0.3678± 0.0030 0.3663± 0.0024
CGPOR 0.3789± 0.011 0.3781± 0.0056 0.3774± 0.0041
MMMF 0.4746± 0.034 0.4786± 0.0139 0.5478± 0.0211

MovieLens NDCG 0.6237± 0.0241 0.6711± 0.0065 0.6455± 0.0103
GPR 0.4937± 0.0108 0.5020± 0.0089 0.5088± 0.0141
CGPR 0.5101± 0.0081 0.5249± 0.0073 0.5438± 0.0063
GPOR 0.4988± 0.0035 0.5004± 0.0046 0.5011± 0.0051
CGPOR 0.5053± 0.0047 0.5089± 0.0044 0.5049± 0.0035
MMMF 0.5521± 0.0183 0.6133± 0.0180 0.6651± 0.0190

Table 5.6: The NGDC@10 accuracy over ten runs and the standard deviation for the strong
generalization evaluation.

108

5.3 Conclusion

5.3 Conclusion

To evaluate the matrix factorization model and algorithm described in Chapter 4, it
has been applied to well known data sets from the recommender systems domain. It
has been shown that the algorithm outperforms the state-of-the-art in Recommender
Systems in many instances. Especially noteworthy is the performance in the ranking
task, where the presented algorithm is the first one able to directly optimize for that in
the Recommender Systems area.

The model extensions have shown their capability to increase the performance of the
system. And, as has been noted above, careful parameter optimization in the appli-
cation domain probably would lead to even better performance with high probability.
This is especially true when using the graph kernel which adds an additional set of
parameters to be learned.

The variance over the ten runs on different data samples in all experiments is very
low, especially given the fact that a non convex function is optimized. The same is true
for the variance on the objective function. The low variance may mean that the same
local minimum is always reached or that this minimum is indeed a global one. From a
user’s point of view, this means that the system presents consistent recommendations
that are stable against small changes in the data set.

The strong performance when using the per-row loss functions is promising good
results for the Machine Teaching scenario. This is even more true for the strong gener-
alization setting. Good performance in this scenario is crucial for the application of any
recommender system technology to be applied to the Machine Teaching scenario. The
results for the matrix factorization model are an order of magnitude better than those
reported for other systems in the literature which makes it especially suitable for the
Machine Teaching task.

Next steps in this thesis: Given these promising results, the next chapter will build
upon the same algorithm to assess the viability of a Detailed Feedback Machine Teach-
ing system for software engineering.

109

6 Detailed Feedback Machine Teaching for
Software Engineers

Contents
6.1 Introduction . 112

6.1.1 Application Domain: Programming with Frameworks 112
6.2 Related Work . 114
6.3 Matrix Factorization Modeling . 116
6.4 Evaluation Setup . 116

6.4.1 Method . 117
6.4.2 Data Set . 118
6.4.3 Baseline System . 120

6.5 Evaluation Results and Discussion . 121
6.6 Conclusion . 126

111

6 Detailed Feedback Machine Teaching for Software Engineers

6.1 Introduction

In this chapter, we will apply the algorithm introduced in Chapter 4 to Detailed Feed-
back Machine Teaching. The goal of a Detailed Feedback Machine Teaching system as
defined in Section 2.5 on page 47 is to provide the learner with detailed feedback re-
garding the artifacts she presents to the system. That feedback shall be based upon a
machine learned model of the artifact structure that has been built based upon a data-
base of artifacts created by experts.

The goal of this chapter is to evaluate whether the algorithm presented in Chapter 4
can be used as the core of such a system. This study is presented as follows: Sec-
tion 6.1.1 introduces the chosen example domain, software engineering, and Section 6.2
presents the learning tools available in that area. In Section 6.3 we will show how a
matrix factorization model can be used in this domain. Section 6.4 then presents the
evaluation procedure used and the results obtained therewith to assess the suitability
of the algorithm to this Detailed Feedback Machine Teaching task.

6.1.1 Application Domain: Programming with Frameworks

We chose to apply the Detailed Feedback Machine Teaching approach and the matrix
factorization algorithm to the domain of software engineering with source code as the
artifact. We did so for the following reasons.

Source code is easy to mine: The source code of a program needs to be parsed by a
machine in order to be run on a computer. This prerequisite of source code makes
it conceptually easy to analyze it.

Source code contains mine-able structure: Additional, source code needs to be syntac-
tically correct in order to be useful. Therefore, source code is highly structured
and thus allows us to assume that its structure can be uncovered through ma-
chine learning.

Software Engineering knowledge is often not externalized: Despite the fact the source
code is a very structured and formalized artifact, the knowledge that is needed to
write it is often not externalized, is comprises not only text book knowledge, but
also experience and skill. Nevertheless, this knowledge settles as sediment in the
source code.

Within the broad area of software engineering, we investigate the use of software
frameworks by programmers. Software frameworks such as the SWT user interface
framework facilitate reuse not only of the functionality contained within them, but also
of usage patterns for that functionality. Reuse is a major goal in software development.
Properly implemented, it leads to lowered costs, faster time to market and increased
quality. Software frameworks are a major facilitator for software reuse.

Thus, learning to use software frameworks properly is an important task for software
engineers. And as the knowledge needed to use a framework is often not external-
ized, assisting programmers in learning to use them is a suitable application of Detailed

112

6.1 Introduction

WorldDom.javaTest.javaDB.java

Editor

Others called log() in similar situations

Figure 6.1: Mockup of the user interface of a Detailed Feedback Machine Teaching sys-
tem for software engineers.

Feedback Machine Teaching. As described above, source code is well structured and
therefore rather directly amenable to machine learning methods. Additionally, many
examples of proper framework use exist that can be assumed to adhere to the inher-
ent rules of the framework in question. In fact, developers frequently resort to code
examples from other developers when learning.

The Machine Teaching instance described in this chapter focuses on a subset of the
problem of learning to code with and withing software frameworks: The proper co-
occurrence of calls within a context. Prominent examples include opened files or data-
base transactions that need to be closed. Another example is code that creates user
interfaces, as there are certain rules inherent to those as well, such as the need to link
related check boxes and their label.

Figure 6.1 depicts the vision of such a tool. Given the source code currently present in
a method, it recommends additional calls typically co-occurring with the ones already
present.

More formally, we expect the Machine Teaching System to recommend additional
method calls to a user when presented with a context in which the recommended calls
shall be inserted. This context can be of different granularity, e. g. the method body sur-
rounding the possible insertion of the call. Additionally, the system is provided with
data about this context. At the very least, other calls present within the same context
are available, while more detailed data is subject to an in-depth feature extraction pro-
cess. As the aim of this work is broad applicability, the following focuses only on other
method calls as available data.

113

6 Detailed Feedback Machine Teaching for Software Engineers

6.2 Related Work

Today, programmers learning to use a software framework can resort to a number of
tools and resources. This Section shall give an overview of these and discusses how
they support the learning of software framework use.

Manual techniques

First and foremost, software developers rely on manually created resources in their
work. Descriptive techniques such as cookbooks, tutorials, examples, and pattern lan-
guages document how to use a framework to accomplish a specific task [GM96, Joh92].

Other work is directed to the documentation of a framework’s architecture, so that
users understand the rationale behind the design [BJ94] while there also have been
efforts to standardize the framework documentation [BKM00]. In [HHG90], techniques
that focus on the documentation of interactions between specific sets of collaborating
classes are introduced.

Finally, frameworks are usually shipped with minimal examples specially written to
demonstrate specific functionality of a framework.

Conclusions for Machine Teaching: While all these techniques help in learning to use a
software framework, much effort has to be spend to create and maintain corresponding
documentation. Hence, often such documentation does not exist or is outdated. In
contrast to these approaches, Machine Teaching promises to support the learner with
automated feedback during her coding. The underlying models of this feedback can
also be updated constantly to provide up-to-date help to the learner.

Example finding tools

Another category of tools enable users to find instantiation examples in code reposi-
tories. Several tools treat code like regular text documents and apply information re-
trieval technology to find code examples. Systems like this include [FN87] and Google
Code Search[goo]. Software exploration tools like Sextant[SEHM06] or modern IDEs
like Eclipse[Fou09] provide queries to search for code elements based on structural
properties. However, such approaches require users to have a precise idea of their
information need and to be familiar with the vocabulary used. CodeFinder[Hen91] ad-
dresses situations where this is not the case. It enables users to iteratively refine their
queries based on the results of previous executions.

Some tools feature implicit queries, i.e., the user is no more required to write a query,
but the latter is generated from the current context. For instance, Codebroker[YFR00]
uses signature information and comments to actively present similar program elements
in its repository. Strathcona[HM05] uses the structural context of the code under devel-
opment, e. g. , the super type, method calls, or overridden methods, and finds examples
with a high similarity to this context.

114

6.2 Related Work

As shown in[SLB00], source code examples are useful for understanding a frame-
work and the use of existing code bases imposes no additional effort. However, instead
of providing the framework specific knowledge only, the developers also have to read
irrelevant code, i.e., code specific to a single instantiation, which may complicate the
understanding process.

Conclusions for Machine Teaching: Example finding tools can be an important aug-
mentation for a Machine Teaching system. Given a suggestion by the Machine Teaching
system, the learner may request examples to justify these suggestions.

Mining-based tools

We will now present related approaches where data mining and machine learning tools
have been applied to source code before to analyze their limits.

One problem when using frameworks is to derive the exact sequence of calls needed
to obtain an instance of a given framework type. This problem is addressed by tools
like Prospector[MXBK05] which traverses an API call graph to find possible method
sequences that return an instance of the framework type in question. For building the
recommendations, Prospector uses different heuristics like shortest paths in the graph
to rate the relevance of the sequences found.

Another problem is to find temporal constraints between method calls. Systems such
as Jadet[WZL07] and MAPO[XP06] use sequence mining to find frequent method call
sequences. This approach is well suited to mine usage patterns within one framework
type. However, recommending framework usage that involve several framework types
is unlikely to work well since temporal constraints between calls to these types typically
exist in a few cases only.

A related area of research is automated bug detection. Tools like PR-Miner[LZ05a]
and Dynamine[LZ05b] use association rule mining to find implicit programming rules
in code and classify violations of these rules as potential bugs. FrUiT[BSM06] and
CodeWeb[Mic00] use association rule mining to find programming rules in existing
code.

Parallel to this thesis, the paper [BMM09] was published which also presents a ma-
chine learned approach to code recommendations. However, that approach focusses on
recommending additional calls per object as opposed to per context as described here.

Conclusions for Machine Teaching: All of these approaches are limited, either to a
specific type code such as object instantiation in the case of Prospector or to patterns
that are bound to a single type as opposed to interactions between objects of different
types.

These interactions between different types are, however, an important aspect of frame-
work use. And as we shall see in the next section, patterns of those can be found by a
matrix factorization model.

115

6 Detailed Feedback Machine Teaching for Software Engineers

6.3 Matrix Factorization Modeling

This section describes how to transfer the task of Machine Teaching in the context of
framework learning to a matrix factorization problem instance amenable to the treat-
ment presented in Chapter 4. First, the mapping of calling relations in code into a
matrix will be shown. The second and final step in building the matrix factorization
problem is to choose an appropriate loss function.

Data Representation

The code used for training the system as well as the partial code written by a learner is
transferred to a matrix Y by assigning one row of Y for each context.

Here, we distinguish between the method in which the call shall be placed (method-
level) and the surrounding class (class-level). Other levels of granularity such as mod-
ules, code blocks and user defined code groups are conceivable.

Each column in the input matrix Y then represents a callable method. These calls are
then recorded into the matrix Y where Yi, j = 1 indicates that a call to method j was
found in context i.

That representation is illustrated in Figure 6.2 for the following example:

Example 11. class A is used as the context. In this class, four methods are called. Each of
these calls is recorded in the row of Y that corresponds to class A. The matrix also shows a hy-
pothetical class B that contains only two calls to methods. See Figure 6.2 for a visualization
of this mapping.

Loss Function

Each entry Yi, j encodes whether or not method j has been called in context i. Thus, the
data is inherently binary. Candidates for the loss function in that case are the Hinge
loss function as well as the logistic regression loss.

However, the positive and negative class are heavily imbalanced: Each class and
method only calls a very small percentage of the methods present in the software frame-
work. Thus, the rows of Y encode far fewer calls than “non-calls”. Hence, the weighted
variants of these loss functions as introduced in Section 4.4.1 and Section 4.4.1 are used.

6.4 Evaluation Setup

This section provides details on the empirical evaluation conducted on real data from
the software engineering domain. The evaluation focuses on the question of how much
of the hidden and implicit knowledge embodied in source code a Matrix Factorization
model can capture. This is a crucial step towards the actual integration into the software
development work flow, e. g. as depicted in Figure 6.1.

116

6.4 Evaluation Setup

class A {

 void foo() {
 Button b = new Button();
 b.setText("text");
 Text t = new Text(..);
 t.setText(..);
 ..
 }
}

Bu
tt
on
.<
in
it
>(
)

Bu
tt
on
.s
et
Te
xt
()

Te
xt
.s
et
Te
xt
()

Te
xt
.<
in
it
>(
)

1 1 1 1 …

0 0 1 1 …

… … … … …

class A

class B

…

Y

Figure 6.2: Representing call relations in source code as a sparse matrix when using
classes as the context.

6.4.1 Method

Evaluation Procedure

The system was evaluated based on the simulation of a novice programmer: In each con-
text, half the calls are presented to the system. Then, the system is asked to recommend
additional calls. In order to build the initial model, the system is trained on 90 % of the
contexts in the data. The resulting matrix C is then used according to Section 4.5.3 to
predict the remaining calls for a user.

The remaining 10 % of the available data is then used for the actual simulation. The
system is presented one context at a time that contains 50 % the actual calls in that
context. Then, the objective function (4.8) is optimized for this one row in Y. The
prediction F for this row is then evaluated against the known truth. We repeated this
procedure 10 times for different random samplings of the train data.

Evaluation measure: The system can be thought of a special case of an information
retrieval system: Given the calls already present in a context, it retrieves additional
candidates for inclusion in the program code. These candidates may or may not be
relevant in the context. Thus, the evaluation of the system can be done by drawing
upon well established information retrieval performance measures, namely:

Definition 16. The precision of the system is the fraction of the recommended calls that are
relevant in the context:

precision =
| {relevant calls} | ∩ | {recommended calls} |

| {recommended calls} |

117

6 Detailed Feedback Machine Teaching for Software Engineers

Definition 17. The recall of the system is the fraction of the relevant calls in the context the
system was able to suggest:

recall =
| {relevant calls} | ∩ | {recommended calls} |

| {relevant calls} |

It is commonly known in the information retrieval community that there is a trade-
off between precision and recall: A system that recommends all possible calls will score
a recall of 1.0 while it will not fare well in terms of precision. On the other hand, a
system can achieve almost perfect precision by recommending only very few, but very
likely calls. This problem is addressed by the so called F-measure:

Definition 18. The F-score of a system is the weighted mean of its precision and recall:

Fβ =
(1 + β2) ∗ precision ∗ recall

β2 ∗ precision + recall

Here, we focus β = 1 which is commonly referred to as the F1 measure. It is computed as
the harmonic mean between precision and recall:

F1 =
2 ∗ precision ∗ recall

precision + recall

6.4.2 Data Set

The system is evaluated on data gathered from the source code of the Eclipse Integrated
Development Environment. To be more specific, the evaluation focuses on calls from
the Eclipse Code to the Standard Widget Toolkit (SWT), the User Interface (UI) Frame-
work used in Eclipse. This scenario was chosen for the following reasons:

• UI frameworks are amongst the most commonly used.

• Typically, the use of these frameworks involves several method calls on different
framework objects. When creating graphical user interfaces, a large number of
framework objects like text fields, buttons and labels collaborate with each other.
This means that there are mine-able usage patterns for SWT.

• SWT is developed for Eclipse. Hence, we can assume that the calls from Eclipse
to SWT follow the proper usage patterns for SWT.

• Eclipse is a sufficiently large code base to perform meaningful analysis on.

• SWT is used in many more projects and thus training a recommender on the
Eclipse code base could be beneficial to a greater target audience of developers.

118

6.4 Evaluation Setup

Data extraction:

As mentioned above, we perform experiments for two possible contexts of recommen-
dation: Classes and Methods. To extract the calls from each method and class in Eclipse
to SWT, the WALA toolkit1 was used. WALA is an open source software package from
IBM’s T. J. Watson research center which provides functions for the static analysis of
code running on the Java Virtual Machine.

Data characteristics:

We found 1, 557 methods in SWT that were called from Eclipse. We found 5, 642 meth-
ods in Eclipse that called at least one method in SWT and 2, 733 classes in Eclipse that
do so. The method data contains 52, 895 calls, for the class data we recorded 41, 369
calls.

80

100

120

140

C
A

LL
S

0

20

40

60

0 300 600 900 1200 1500 1800 2100 2400 2700

C

ECLIPSE CLASSES USING SWT

Figure 6.3: Histogram of the number of calls to SWT per class in Eclipse

Figure 6.3 shows the distribution of the number of calls per class. The data for the
method context shows the same long tail distribution: We observe both a few classes
with many calls to SWT and many classes with only a few calls to SWT. 24% of the
classes in Eclipse call only a single SWT method and two thirds of the classes invoke

1http://wala.sf.net

119

http://wala.sf.net

6 Detailed Feedback Machine Teaching for Software Engineers

less than 15 SWT methods. These properties can be attributed to the way modern object
oriented software is constructed which favors small components with small responsi-
bilities. However, there exist more complex classes in Eclipse that use up to 130 dif-
ferent methods from the SWT framework and unless their developers have a precise
understanding of the framework their application is unlikely to function properly.

Figure 6.4 shows the call frequency distribution in this data set. The data shows a
long tail of methods that have been called very infrequently. On the other hand, 2.5 %
of the methods amount to 50 % of all the recorded calls. A qualitative analysis revealed
that the more frequently called methods represent the core of the SWT framework such
as the UI classes.

900

1000

700

800

500

600

C
A

LL
S

300

400

500

C

100

200

300

0

100

0 300 600 900 1200 15000 300 600 900 1200 1500

SWT METHODS

Figure 6.4: Histogram of the number of calls per SWT method

6.4.3 Baseline System

Now that the data set used for the evaluation has been presented, we now present the
baseline system implemented. The baseline system serves as a lower bound for the
performance to be expected by the matrix factorization algorithm.

Following the literature, a baseline recommender system based on the ideas pre-
sented in [BSM06, Mic00] was implemented to compare the matrix factorization ap-
proach with. These systems are based on association rule mining.

120

6.5 Evaluation Results and Discussion

Method λr λc factors g+

Class context Softmargin 10 1 45 10
Logistic 20 20 30 10

Method context Softmargin 10 1 30 10
Logistic 10 10 30 10

Table 6.1: Parameter settings used in the software engineering experiments

The problem of mining association rules is to find all rules A → B that associate one
set of method calls with another set. Hereby, A is referred to as the antecedent and B
as the consequent of the rule. Two measures for the relevance of a rule exist. The sup-
port specifies how often the method calls appear together. The confidence measures how
frequently they conditionally appear, in our case how many rows in the matrix that
contain the method calls of the antecedent also contain all method calls of the conse-
quent. To limit the result to most likely meaningful rules, a maximum antecedent size,
a minimum support and a minimum confidence is specified for the mining process.

For mining the association rules, a freely available Apriori rule miner2 is used. In
order to obtain a reasonable baseline for our approach, we run a set of experiments with
different thresholds for minimum confidence and minimum support, namely five min-
imum confidence values (0.01, 0.2, 0.5, 0.7 & 0.9) and three different absolute support
thresholds (5, 20 & 40). Furthermore, we used the rule miner’s built-in statistical sig-
nificance pruning with standard settings. We restricted the antecedent size of the asso-
ciation rules to one. We selected these parameters based on results reported in [BSM06]
for the FrUiT code recommender system. Experiments showed that an absolute sup-
port threshold of 5 and a minimum confidence threshold of 0.9 lead to the best results
according to the F1 measure.

6.5 Evaluation Results and Discussion

For both the class and the method context, parameter tuning on one of the ten data
splits for optimal F1 score was performed. Table 6.1 contains these best parameters
found.

Figure 6.5 shows the performance for the two loss functions used in the evaluation
as well as the results obtained with the baseline system. Table 6.2 contains the precise
numerical results. Note that the unanswered cases, the cases for which the systems
don’t suggest any call, are generally fewer for the matrix factorization system. This
allows the system to help the learning programmer in more cases, a generally desirable
property.

2http://www.borgelt.net/software.html

121

http://www.borgelt.net/software.html

6 Detailed Feedback Machine Teaching for Software Engineers

F1 Precision Recall

Rules
Soft Margin
Logistic Regression

Class data

0.67

0.73 0.74

0.79

0.74

0.78

0.58

0.73

0.70

F1 Precision Recall

Method data

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.68

0.73 0.74

0.83

0.72

0.82

0.57

0.75

0.68

Figure 6.5: F1, precision and recall results for the Method and Class data for the rule
based approach and matrix factorization using the soft margin and the re-
gression loss functions.

Context Algorithm F1 Precision Recall Unanswered
Method Rules 0.68± 0.01 0.83± 0.02 0.57± 0.01 144± 11

Softmargin 0.73± 0.01 0.72± 0.02 0.75± 0.01 118± 11
Logistic 0.74± 0.01 0.82± 0.02 0.68± 0.02 124± 8

Class Rules 0.67± 0.02 0.79± 0.03 0.58± 0.02 56± 5
Softmargin 0.73± 0.02 0.74± 0.02 0.73± 0.02 48± 10
Logistic 0.74± 0.02 0.78± 0.02 0.70± 0.02 50± 8

Table 6.2: Averaged results in terms of F1, precision and recall over 10 runs. Note that
the differences in F1 between softmargin and logistic loss as well as the differ-
ence in precision between rules and logistic loss are not statistical significant

122

6.5 Evaluation Results and Discussion

We observe that the matrix factorization algorithm with a logistic regression loss per-
forms best in terms of the F1 score, closely matched by the soft margin loss. Matrix fac-
torization overall performs significantly better than the rule based approach in terms of
the F1 score. However, both loss functions show very different performance character-
istics: For the logistic regression loss, recall and precision differ significantly while the
performance of the soft margin loss function is more balanced.

Influence of the weight

Note that precision and recall are very sensitive to the value of g+, the positive weight.
Thus, a desired balance between the two measures can be easily achieved by tweaking
this value.

Figure 6.6 depicts the relation between the performance measures and the weight pa-
rameter for the matrix factorization system with a soft margin loss. As to be expected,
the value of precision decreases as the positive weight increases. The recall behaves in
an inverse manner and increases as the weight goes up. The optimal value of the F1 is
reached for the weight value 10 (2.3 in the log plot). The weight parameter thus pro-
vides a convenient way of adjusting the performance of the system to the requirements
of the particular situation.

Influence of the number of factors:

Another interesting parameter to study is the number of factors and its impact on sys-
tem performance. The run-time performance of the system is almost only determined
by its value.

Figure 6.7 depicts the values of F1, precision and recall for different numbers of fac-
tors for the soft margin loss function. We observe that for about 30 factors the system
reaches an almost optimal performance while further increases do not affect the perfor-
mance in terms of the F1 score in a significant way.

Runtime performance

Training the initial model takes about 7 minutes for the class context data and 25 min-
utes for the method context data using the logistic loss function. Based on this model,
the system can predict calls in a few milliseconds in the current scenario. This is fast
enough to implement the algorithm within an interactive environment.

The main memory needed is the one for C, as R can be discarded after initial training.
C for 45 factors needs 1557 ∗ 45 ∗ 8 Bytes = 547 kBytes of memory. This also is easily
available on a developer workstation.

123

6 Detailed Feedback Machine Teaching for Software Engineers

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log(weight)

F1
Precision
Recall

Figure 6.6: F1, precision and recall for the matrix factorization system with a soft mar-
gin loss for different value of the weight parameter (on a natural log scale)

124

6.5 Evaluation Results and Discussion

0 50 100 150 200 250

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of factors

F1
Precision
Recall

Figure 6.7: Results for F1, precision and recall obtained with the matrix factorization
system with a soft margin loss and different values for the number of factors
parameter

125

6 Detailed Feedback Machine Teaching for Software Engineers

6.6 Conclusion

We presented an application of the Detailed Machine Teaching approach in this chapter.
As before, the focus was on the question whether a machine learning model, namely
the matrix factorization approach described in Chapter 4 can be applied to the task of
generating detailed feedback for learners.

We chose the software engineering domain for this evaluation, as source code is natu-
rally digital and well structured. Both of which render source code analysis suitable for
this evaluation. In addition to this easy availability and interpret-ability of the artifacts,
the knowledge needed to create them is usually not externalized. These observations
make software engineering a suitable target for an evaluation of the Detailed Feedback
Machine Teaching approach.

The results, which were obtained based upon a simulated programmer, indicate that
the machine learning model is indeed capable of capturing important knowledge from
the provided expert code. This is especially noteworthy, as we did not perform any
adaptations of the model and algorithm as introduced in Chapter 4: The main design
decision was to decide for the structural elements to operate on and for a loss function.
Both decisions are inevitable and do not form a special case for the application in this
chapter.

Thus, the argument from Section 2.5 on page 47 proofed itself to be true in this ex-
ample: Even if one could design a machine learning model for each kind of artifact, it
is not always necessary for sufficient performance. Future work should investigate the
suitability of the algorithm presented in Chapter 4 to further substantiate that claim.

The results also show empirically that the algorithm meets the requirements set out
for a recommender system to be used in Machine Teaching in Section 2.5 on page 49 in
this application domain, namely:

R1: Accurate solutions for partial artifacts: As we have described, the system is capa-
ble of predicting well given 50 % of structural elements, in this case of the calls in
a context.

R2: Interactive Performance: Prediction generally took only a few milliseconds. Obvi-
ously, this is fast enough for interactive use of the system, where a response times
of up to 0.1 seconds are generally considered to be unnoticeable (see e. g. [Mil68]
and [NL06], Chapter 5).

This performance, coupled with the low memory footprint, also facilitates further
application of the approach to the multi-framework case where the number of
potential callees rises significantly.

R3: Recommendation Coherence: This again follows from the evaluation results: The
system achieved high precision scores in the order of 0.75 which indicate that it
was indeed capable of providing coherent suggestions to the user. This is espe-
cially notable as the system showed a far higher recall than the baseline system.

126

6.6 Conclusion

R4: Easy Adaptation to Multiple Types of Prediction: Through choosing the weighted
variants of the logistic and hinge loss functions, we adapted the system to the type
or prediction necessary in this case.

Even though specialized models may outperform the application of the rather gen-
eral matrix factorization framework done here, it is thus safe to conclude that the ma-
chine learning aspect of Detailed Feedback Machine Teaching can be provided by ma-
trix factorization models, especially by the one introduced in Chapter 4 of this thesis.
The predictions generated are accurate and quickly available, even in the case where
changed artifacts occur frequently.

127

7 Conclusions

129

7 Conclusions

7.1 Summary

Problem Statement By its very design, current Technology Enhanced learning sys-
tems cannot convey knowledge that is not standardized, structured and most of all ex-
ternalized. However, important knowledge such as intuition, experience or more gen-
erally speaking implicit knowledge does not meet these requirements. Additionally,
the structured externalization of knowledge in the form of electronic learning material
is often impossible for economic reasons, as its creation is costly.

In traditional education, the apprenticeship with its master-student relationship is
used to convey this knowledge. In this setting, the master explains to, discusses with
and corrects the learner in a situation centered around the learned activity. This ap-
proach is very effective. Yet, it by design requires the availability of a master in the field
to the learner.

Approach MACHINE TEACHING is proposed in this thesis to overcome these limita-
tions: We notice that knowledge, even if not standardized, structured and externalized,
can still be observed through its application. We refer to this observable knowledge
as PRACTICED KNOWLEDGE. Machine Teaching is build upon this notion: Machine
Learning techniques are used to extract machine models of Practiced Knowledge from
observational data. The models thus capture traces of the Practiced Knowledge that
went into the artifacts and processes, be it implicit or explicit. These models are then
applied in the learner’s context for his support.

It is important to note that the people creating the artifacts or following the processes
need not to be aware of their role in the system: They are not teachers, they are prac-
titioners. Therefore, Machine Teaching focuses on the practice, not the ideal, just as the
apprenticeship.

While both processes and artifacts can be the anchor in a Machine Teaching scenario,
the automatic detection of processes still is an open field of research. As this is a pre-
condition to a successful implementation of a Machine Teaching system, the thesis puts
a focus on artifacts.

Levels of Feedback

We identified two important sub-classes of Machine Teaching: General and Detailed
Feedback Machine Teaching.

General Feedback Machine Teaching General feedback in a way is like the grades
given at school: Given an artifact, the Machine Teaching system determines its qual-
ity. This is a straight-forward application of techniques from the field of supervised
machine learning and the main effort in building a specific Machine Teaching System
lies in deriving appropriate feature extraction procedures. Thus, General Feedback Ma-
chine Teaching is readily applicable to a wide range of scenarios where the feature
engineering task is either straight-forward or has been studied to great extend. This in-
cludes tasks related to text, images and of course artifacts which exhibit feature-vector

130

7.1 Summary

structure themselves. The application presented in this thesis, learning to write for a
specific community, shows that the approach is viable and that the predicted quality of
the artifact can in fact be very close to the one perceived by the community.

Detailed Feedback Detailed Feedback Machine Teaching aims at providing feedback
regarding the attributes of the artifact to the learner. To do so, the machine learning
model needs to have a notion of these artifact and their relations. This, in principle,
provokes the creation of a specific machine learning model for each detailed feedback
application of Machine Teaching. However, it has been shown in this thesis that De-
tailed Feedback Machine Teaching often exhibits a striking similarity to the task of a
recommender system. Where the latter suggests items to customers, the former “sug-
gests” attributes to artifacts. Despite this obvious similarity, Machine Teaching poses
additional requirements onto the underlying algorithm not usually occurring in Rec-
ommender Systems. These include a greater variety in the attributes of artifacts, the
frequent prediction upon yet unseen artifacts and the real-time nature of a Machine
Teaching system. Last but not least, Detailed Feedback Machine Teaching imposes con-
sistency requirements for one artifact as a whole, while a Recommender System is usu-
ally focused on predicting the rating a user would associate with a single item.

Matrix Factorization Model and Method This thesis presented a novel model and al-
gorithm based on factor models that substantially generalizes the state-of-the-art in
this field to address these requirements uniquely found in Machine Teaching. The al-
gorithm is a valuable contribution to the field of Recommender Systems in its own right
as it is the first to be able to predict rankings as opposed to ratings. Additionally, it forms
a hybrid Recommender System that can use known features of the user (artifacts) and
items (structural elements) in addition to the collaborative effect present in such data.
The base algorithm as well as the extensions thereof proposed in this thesis have shown
favorable performance on standard Recommender Systems evaluation data sets avail-
able. It is important to note that the algorithm excels especially in what is called the
new-user problem in Recommender Systems: Given a new, yet unseen user with some
rated items and a trained model based on other users, the goal is to predict well for this
new user. While this situation is the exception in Recommender Systems, it is the norm
in Machine Teaching: every time the learner presents the system with an artifact, that
artifact constitutes a “new user”. Thus, excellent predictive performance on this task is
crucial for Machine Teaching.

Machine Teaching for Software Engineering The domain of learning to program well
within a software framework is modeled as a task for Detailed Feedback Machine
Teaching by forming a caller-callee matrix of representative code. This matrix stores
every call to the software framework from the code analyzed, where each row repre-
sents one method or class of the analyzed code and each column represents a possibly
callable method of the framework. The goal of a Machine Teaching system when con-
fronted with a partial row is to predict missing calls. As we have shown in the empirical

131

7 Conclusions

evaluation, the model is capable of capturing the structure in this matrix and can there-
fore compute meaningful feedback for the learning programmer.

This application exemplifies the expressive power of the factor model presented in
this thesis, as the model was applied to the problem in a straight-forward manner. So
even while purpose-built models are likely to perform even better, the factor model
can serve as the underlying model for a wide range of Machine Teaching applications.
It therefore provides Detailed Feedback Machine Teaching with a foundation just as
supervised machine learning forms the base of General Feedback Machine Teaching.

7.2 Future Work

In this thesis, it was successfully demonstrated that machine learning models can mine
artifacts to compute feedback for learners. Future work can build upon this result to
address additional challenges of a Machine Teaching System.

Open Questions in Machine Teaching

The User Interface: The feedback computed following the methodology introduced
in this thesis needs to be presented to the learner in a useful way. For the software
development scenario, we hypothesized that the presentation could be done sim-
ilarly to that of compiler warning and errors as depicted in Figure 6.1 on page 113.

For many other domains, this question of the user interface is essentially open.
Further studies should reveal if and how much the feedback user interface for
Machine Teaching differs from traditional systems where the underlying model
is designed as opposed to machine learned.

User Studies: Given a user interface, the next step would be a user study. Machine
Teaching, especially when used without the distinction between Learners and Ex-
perts, may give rise to new or adapted use patterns. One question to study would
be whether experts use a Machine Teaching system differently from novices and
if both use cases lead to learning.

Feature Engineering for Detailed Feedback: As introduced above, the matrix factor-
ization algorithm can make use of row and column features if they are available.
While the software engineering system obtained good results without them, fur-
ther improvements are possible. In the software engineering domain, these fea-
tures can be extracted using static code analysis.

Matrix Factorization Improvements

Factor models are an active field of research and the model presented in Chapter 4 pro-
vides a solid framework to integrate current results from the field as well as upcoming
research directions such as:

132

7.2 Future Work

Use of Hierarchies: In many instances, the rows or columns of the input matrix form
a hierarchy. In Recommender Systems, these hierarchies can be the result of e. g.
movie sequels, editions or, for the users, the hierarchy induced by the addresses
of the users. Hierarchies almost naturally occur in the software engineering ap-
plication of the Machine Teaching approach:

• Statements are part of methods; methods are part of classes and they them-
selves are organized into packages, name spaces or modules.

• Programmers belong to a team which belongs to a department which is part
of a larger institution. The coding style and conventions can be assumed to
be increasingly detailed from the top to the base of this hierarchy.

Using these and other hierarchies can not only increase the predictive perfor-
mance of a factor model, it can also allow it to fail in a more grateful manner
by suggesting at least a movie from the right genre if failing to suggest the most
likely movie. In Machine Teaching, a system could e. g. fail to suggest the right
call, yet be able to predict that a call on a certain object is missing.

There are currently no systems that can make use of this information in the factor
models realm. The topic is, however, in the focus of a track of research in super-
vised machine learning under the term “feature hierarchies“. Further research
could investigate the transfer, adaptation and augmentation of these results to
factor models.

Fixed Memory Factor Models: Many Recommender Systems are faced with millions
of items and users. Another large-scale problem, which Collaborative Filter-
ing has been recently applied to, is advertisement placement, where one essen-
tially deals with as many “users” as the number of websites as described e. g.
in [ABC+07]. Storing the matrices R and C in main memory is infeasible for these
scenarios.

There is a growing interest in what is called hash models in machine learning that
compress the model by depending on the collisions of a hash function. Follow-
ing [WDA+09], this idea can be transferred to factor models by defining a hash
function on the rows and columns. Depending on the application, the collisions of
this hash function may either be entirely random, or based upon features known
about the rows and columns. One can then scale the memory requirement by
fixing the hash function to output only a certain number of results to escape the
linear scaling of factor models.

Note that this is not the same application of hash functions as in feature hashing
as used e. g. by Vowpal Wabbit as described in [LLS07]. In these on-line learning
approaches, the number of features in the input domain is reduced to a fixed size
in order to gain computational efficiency. In our terms, that would be similar to
reducing the number of factors d by means of hashing. In our approach, this is
unnecessary as d is a parameter in our case, while it is fixed in normal classifica-
tion or regression problems where it represents the number of features. In these

133

7 Conclusions

types of problems that number can be huge, e. g. when dealing with text where
the presence of every word is typically treated as a feature.

Online Learning: As introduced above, the factor model is trained in offline mode:
Given the data matrix Y, the system finds the model matrices C and R. In many
cases, an online training is more appropriate where the model is built from a
constant stream of new entries in Y. As we have seen in Section 4.5.3 on page 96,
the model can be adapted to new rows easily. The same idea cannot be extended
to new columns under the assumptions of Chapter 4, as we explicitly support
per-row loss functions.

If one assumes element-wise losses, it is well known that Factor Models can be
built in an online fashion using algorithms such as the Stochastic Gradient De-
scent. Future research is necessary to investigate possible approximations or for-
mulations of the model with per-row losses that facilitate online updates.

Factor Models with Context Aware Biases: Recently, a factor model was proposed for
the field of Recommender Systems that explicitly models the temporal effect of
a Recommender System by essentially making the row and column biases time
dependent in [Kor09]. The reasoning for Recommender Systems is that the pref-
erences of users change over time and that the overall preference changes over
time, too, e. g. because of a successful product placement in a national TV show.

As hinted above, this proposal can be integrated into the framework of this thesis
by having different column and row biases for different times.

In a broader view, this recent development hints at context-aware factor mod-
els. In the example above, time served as the context and as such linked the row
and column biases. It would be interesting to extend this concept to features of
the matrix elements. In Recommender Systems, that would be features of a rat-
ing and the premier example of such a feature is the time at which the rating is
given or asked to be predicted. Other useful sources of context for e. g. the movie
Recommender System would be the intended audience of the movie as the rec-
ommendations in e. g. a family should differ depending on whether a movie is
sought for just the parents or the whole family.

In Machine Teaching, such a system opens additional avenues for tailoring the
suggestions to the user by using the user features as context. Informally, the sys-
tem would no longer form predictions like “In other instances, people also did
A.” to more personalized ones like “In other instances, people like you also did
A.” This raises subsequent questions in the application domain such as how to
define a similarity measure on learners and under which circumstances a person-
alization helps or hinders the learning.

Sequence Prediction: In many Machine Teaching scenarios, ordered entries in the rows
occur naturally, e. g. in the software engineering domain where a file needs to be
closed after it has been opened. One naive way of supporting this is to encode in
Yi, j the position at which call j was made in context i. Then, the ordinal regression

134

7.2 Future Work

loss function can be used to build a model that can predict these orderings. How-
ever, this approach is rather ad-hoc and is rather impractical for the following
reasons:

• There is no principled way to deal with repetitions which frequently occur
in real data.

• Such a model can only predict the ordering of the calls, but not the presence
of them. This could be solved by yet another ad-hoc fix by building a second
model e. g. based on the logistic regression loss.

Thus, a more principled solution to this task is needed. Markov Models probably
can serve as an inspiration in finding one. A solution would likely be based on
the following idea: The prediction rule of the model needs to be extended such
that a prediction Fi, j depends not only on Ri and C j but also a number of those Ck
which occurred prior to Yi, j in Yi,∗. It is plausible that a model around this notion
can be build by extending the one presented here.

As we have shown, Machine Teaching opens a wide range of research questions in its
application but also poses new challenges to the underlying machine learning models.

135

7.2 Future Work

Wissenschaftlicher Werdegang des Autors

2007 und 2008: Forschungsaufenthalte in Australien. Mitarbeit in der Gruppe ,,Sta-
tistical Machine Learning” von NICTA, Canberra unter Leitung von Prof. Alex
Smola.

2006, 2007 und 2008: Teilnahme an den Machine Learning Summer Schools in Can-
berra (Australien), Tübingen und Kioloa(Australien).

2005: Abschluss des Diplomstudiengangs Wirtschaftsinformatik an der TU Darmstadt
mit Auszeichnung.

2005: Diplomarbeit ,,Genetic Mineplanning – a genetic algorithm approach to mine
planning” bei Prof. Karsten Weihe.

2004: Studienaufenthalt am Centre for Complex Dynamic Systems and Control at The
University Of Newcastle (Australien) zur Erstellung der Studienarbeit ,,Optimiz-
ing Flexibility – a new approach to cope with uncertainty in the mining industry
and beyond”. Betreuer: Prof. Karsten Weihe und Prof. Wolfgang Domschke.

2002: Studienarbeit ,,Entwicklung eines Mechatronik-Frameworks für das Projekt Läufer”
bei Prof. Sorin Huss, TUD.

1999: Aufnahme des Diplomstudiengangs Wirtschaftsinformatik an der TU Darmstadt

1998: Abitur an der Fürst-Johann-Ludwig Schule in Hadamar in den Leistungskursen
Mathematik und Physik.

137

Bibliography

[AB06] Yigal Attali and Jill Burstein. Automated essay scoring with e-rater v.2. The
Journal of Technology, Learning, and Assessment, 4(3), February 2006.

[ABC+07] Deepak Agarwal, Andrei Z. Broder, Deepayan Chakrabarti, Dejan Diklic,
Vanja Josifovski, and Mayssam Sayyadian. Estimating rates of rare events
at multiple resolutions. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM Press, 2007.

[ABEV06] Jacob Abernethy, Francis Bach, Theodoros Evgeniou, and Jean-
Philippe Vert. Low-rank matrix factorization with attributes. CoRR,
abs/cs/0611124, 2006.

[AC09] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor
models. In KDD ’09: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 19–28, New York,
NY, USA, 2009. ACM.

[AG01] John Robert Anderson and Kevin A. Gluck. What role do cognitive architec-
tures play in intelligent tutoring systems?, pages 227–262. Erlbaum, 2001.

[AG09] IM-C AG. Lecturnity. http://www.lecturnity.com, August 2009.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734–
749, June 2005.

[BH04] Justin Basilico and Thomas Hofmann. Unifying collaborative and content-
based filtering. In Proceedings of the International Conference on Machine Lear-
ing, pages 65–72, New York, NY, 2004. ACM Press.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Informa-
tion Science and Statistics. Springer, 2006.

[BJ94] Kent Beck and Ralph E. Johnson. Patterns generate architectures. In Pro-
ceedings of the European Conference on Object-Oriented Programming, pages
139–149. Springer, 1994.

[BKM00] Greg Butler, Rudolf K. Keller, and Hafedh Mili. A framework for frame-
work documentation. ACM Computing Surveys, 32(1):15–21, 2000.

139

http://www.lecturnity.com

Bibliography

[BKV07] Robert Bell, Yehuda Koren, and Chris Volinsky. The bellkor so-
lution to the neflix prize. Technical report, AT&T Labs, 2007.
http://www.netflixprize.com/assets/ProgressPrize2007 KorBell.pdf.

[Bla09] Blackboard. Blackboard. http://www.blackboard.com, August 2009.

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from exam-
ples to improve code completion systems. In Proceedings of 17th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, August 2009.

[BMRC09] Oliver Brdiczka, Jérôme Maisonnasse, Patrick Reignier, and James L.
Crowley. Detecting small group activities from multimodal observations.
Applied Intelligence, 30(1):47–57, 2009.

[Bot04] Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von
Luxburg, editors, Advanced Lectures on Machine Learning, Lecture Notes in
Artificial Intelligence, LNAI 3176, pages 146–168. Springer Verlag, Berlin,
2004.

[BSM06] Marcel Bruch, Thorsten Schäfer, and Mira Mezini. FrUiT: IDE support
for framework understanding. In Proceedings of the OOPSLA Workshop on
Eclipse Technology Exchange, pages 55–59. ACM Press, 2006.

[CB04] Martin Chodorow and Jill Burstein. Beyond essay length: Evaluating e-
raters performance on toefl essays. Technical report, ETS, 2004.

[CG05] Wei Chu and Zoubin Ghahramani. Gaussian processes for ordinal regres-
sion. Journal of Machine Learning Research, 6:1019–1041, 2005.

[Com09a] The Moodle Community. Moodle. http://moodle.org, August 2009.

[Com09b] The Sakai Community. Sakai. http://sakaiproject.org, August
2009.

[CSS00] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regres-
sion, AdaBoost and Bregman distances. In Proc. 13th Annu. Conference on
Comput. Learning Theory, pages 158–169. Morgan Kaufmann, San Francisco,
2000.

[DBSS06] Paul De Bra, David Smits, and Natalia Stash. The design of aha! In HY-
PERTEXT ’06: Proceedings of the seventeenth conference on Hypertext and hy-
permedia, pages 133–134, New York, NY, USA, 2006. ACM.

[DSSS05] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. Smooth ε-insensitive
regression by loss symmetrization. Journal of Machine Learning Research,
6:711–741, 2005.

140

http://www.blackboard.com
http://moodle.org
http://sakaiproject.org

Bibliography

[EN08] Charles Elkan and Keith Noto. Learning classifiers from only positive and
unlabeled data. In Proceedings of the ACM Conference on Knowledge Discovery
and Data Mining (KDD). ACM, 2008.

[FN87] W.B. Frakes and B.A. Nejmeh. Software reuse through information re-
trieval. SIGIR Forum, 21(1-2):30–36, 1987.

[Fou09] The Eclipse Foundation. The eclipse ide. http://www.eclipse.org,
August 2009.

[GM96] Dipayan Gangopadhyay and Subrata Mitra. Design by framework com-
pletion. Automated Software Engineering, 3(3/4):219–237, 1996.

[GMM+07] Iryna Gurevych, Max Mühlhäuser, Christof Müller, Jürgen Steimle,
Markus Weimer, and Torsten Zesch. Darmstadt Knowledge Processing
Repository Based on UIMA. In Proceedings of the First Workshop on Unstruc-
tured Information Management Architecture at Biannual Conference of the So-
ciety for Computational Linguistics and Language Technology, Tübingen, Ger-
many, April 2007.

[goo] Google code search. http://www.google.com/codesearch.

[Hen91] Scott Henninger. Retrieving software objects in an example-based pro-
gramming environment. In Proceedings of the SIGIR International Conference
on Research and Development in Information Retrieval, pages 251–260. ACM
Press, 1991.

[HGO00] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank
boundaries for ordinal regression. In Alexander J. Smola, P. L. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classi-
fiers, pages 115–132, Cambridge, MA, 2000. MIT Press.

[HHG90] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts:
Specifying behavioral compositions in object-oriented systems. In Proceed-
ings of the Conference on Object-Oriented Programming, Systems, Languages,
and Applications and the European Conference on Object-Oriented Programming,
pages 169–180. ACM Press, 1990.

[HKV08] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for
implicit feedback datasets. In Proceedings of the IEEE International Conference
on Data Mining (ICDM), 2008.

[HM05] Reid Holmes and Gail C. Murphy. Using structural context to recommend
source code examples. In Proceedings of the International Conference on Soft-
ware Engineering, pages 117–125. ACM Press, 2005.

[Hul94] David Hull. Improving text retrieval for the routing problem using latent
semantic indexing. In SIGIR ’94: Proceedings of the 17th annual international

141

http://www.eclipse.org
http://www.google.com/codesearch

Bibliography

ACM SIGIR conference on Research and development in information retrieval,
pages 282–291, New York, NY, USA, 1994. Springer-Verlag New York, Inc.

[Joa06] Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of
the ACM Conference on Knowledge Discovery and Data Mining (KDD). ACM,
2006.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. In Proceedings
of the Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications, pages 63–72. ACM Press, 1992.

[Kor09] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2009.

[KPCP06] Soo-Min Kim, Patrick Pantel, Tim Chklovski, and Marco Penneacchiotti.
Automatically assessing review helpfulness. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 423 –
430, Sydney, Australia, July 2006.

[KSF+06] Jihie Kim, Erin Shaw, Donghui Feng, Carole Beal, and Eduard Hovy. Mod-
eling and assessing student activities in on-line discussions. In Proceedings
of the Workshop on Educational Data Mining at the conference of the American
Association of Artificial Intelligence (AAAI-06), Boston, MA, 2006.

[KSH09] Alexandros Karatzoglou, Alexander J. Smola, and Kurt Hornik. Cran pack-
age kernlab 0.9-8 - kernel-based machine learning, 2009.

[KSHZ04] Alexandros Karatzoglou, Alexander J. Smola, Kurt Hornik, and Achim
Zeileis. kernlab – an S4 package for kernel methods in R. Journal of Sta-
tistical Software, 11(9):1–20, 2004.

[KW10] Alexandros Karatzoglou and Markus Weimer. Collaborative Preference
Learning, chapter (to appear). Springer Verlag, 2010.

[Lea09] Advanced Distributed Learning. Scorm. http://www.adlnet.gov/
Technologies/scorm/, August 2009.

[LL03] Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples
using weighted logistic regression. In Proceedings of the 20th International
Conference on Machine Learning (ICML 2003). AAAI Press, 2003.

[LLS07] John Langford, Lihong Li, and Alex Strehl. Vowpal wabbit online learning
project. Technical report, Yahoo! Research, 2007. http://hunch.net/
?p=309.

[LMA87] Matthew W. Lewis, Robert Milson, and John R. Anderson. The teacher’s
apprentice: Designing an intelligent authoring system for high school
mathematics. pages 269–301, 1987.

142

http://www.adlnet.gov/Technologies/scorm/
http://www.adlnet.gov/Technologies/scorm/
http://hunch.net/?p=309
http://hunch.net/?p=309

Bibliography

[LR04] Cliff Lampe and Paul Resnick. Slash(dot) and burn: Distributed modera-
tion in a large online conversation space. In Proceedings of ACM CHI 2004
Conference on Human Factors in Computing Systems, Vienna Austria, pages
543–550, 2004.

[LZ05a] Zhenmin Li and Yuanyuan Zhou. PR-Miner: Automatically extracting im-
plicit programming rules and detecting violations in large software code.
In Proceedings of the European Software Engineering Conference, pages 306–
315. ACM Press, 2005.

[LZ05b] Benjamin Livshits and Thomas Zimmermann. Dynamine: finding com-
mon error patterns by mining software revision histories. In Proceedings of
the ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 296–305. ACM Press, 2005.

[MGNR06] Edward Meeds, Zoubin Ghahramani, Radford Neal, and Sam Roweis.
Modeling dyadic data with binary latent factors. In Advances in Neural
Information Processing Systems 20, Cambridge, MA, 2006. MIT Press.

[Mic00] Amir Michail. Data mining library reuse patterns using generalized asso-
ciation rules. In Proceedings of the International Conference on Software Engi-
neering, pages 167–176. ACM Press, 2000.

[Mil68] R. B. Miller. Response time in man-computer conversational transactions.
In Proceedings of the AFIPS Fall Joint Computer Conference, volume 33, 1968.

[MSM94] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.
Building a Large Annotated Corpus of English: The Penn Treebank. Com-
putational Linguistics, 19(2):313–330, 1994.

[MWK+06] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm
Euler. YALE: Rapid prototyping for complex data mining tasks. In KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 935–940, New York, NY, USA, 2006.
ACM Press.

[MXBK05] David Mandelin, Lin Xu, Rastislav Bodı́k, and Doug Kimelman. Jungloid
mining: helping to navigate the api jungle. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 48–61. ACM Press, 2005.

[NL06] Jakob Nielsen and Hoa Loranger. Prioritizing web usability. New Riders,
Berkeley, California, 2006.

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer, 1999.

143

Bibliography

[PS09] Rong Pan and Martin Scholz. Mind the gaps: Weighting the unknown in
large-scale one-class collaborative filtering. In Proceedings of the 15th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2009.

[QABC09] LLC Quality Alliance Business Consultants. Power trainer. http://www.
powertrainer.net, August 2009.

[RS05] Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix
factorization for collaborative prediction. In ICML ’05: Proceedings of the
22nd international conference on Machine learning, pages 713–719, New York,
NY, USA, 2005. ACM.

[Sch95] Helmut Schmid. Probabilistic Part-of-Speech Tagging Using Decision
Trees. In International Conference on New Methods in Language Processing,
Manchester, UK, 1995.

[SEHM06] Thorsten Schäfer, Michael Eichberg, Michael Haupt, and Mira Mezini. The
SEXTANT software exploration tool. IEEE Transactions on Software Engi-
neering, 32(9):753–768, 2006.

[SG08] Ajit P. Singh and Geoff J. Gordon. A unified view of matrix factorization
models. In Machine Learning and Knowledge Discovery in Databases, European
Conference (ECML/PKDD), 2008. ECML/PKDD-2008.

[SJ03] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In Proceed-
ings of the 20th International Conference on Machine Learning (ICML 2003),
pages 720 – 727. AAAI Press, 2003.

[SLB00] Forrest Shull, Filippo Lanubile, and Victor R. Basili. Investigating reading
techniques for object-oriented framework learning. IEEE Transactions on
Software Engineering, 26(11):1101–1118, 2000.

[SM08] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization.
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, volume 20, pages 1257–1264, Cambridge,
MA, 2008. MIT Press.

[SRJ05] Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakkola. Maximum-
margin matrix factorization. In Lawrence K. Saul, Yair Weiss, and Léon
Bottou, editors, Advances in Neural Information Processing Systems 17, pages
1329–1336. MIT Press, Cambridge, MA, 2005.

[SS02] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[SS05] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In
P. Auer and R. Meir, editors, Proceedings of the Annual Conference on Compu-
tational Learning Theory, number 3559 in Lecture Notes in Artificial Intelli-
gence, pages 545–560. Springer-Verlag, June 2005.

144

http://www.powertrainer.net
http://www.powertrainer.net

Bibliography

[SVL08] Alexander J. Smola, S.V.N. Vishwanathan, and Quoc Viet Le. Bundle meth-
ods for machine learning. In Advances in Neural Information Processing Sys-
tems 20, Cambridge, MA, 2008. MIT Press.

[TGK04] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information
Processing Systems 16, pages 25–32, Cambridge, MA, 2004. MIT Press.

[TJHA05] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and
Yasemin Altun. Large margin methods for structured and interdependent
output variables. Journal Of Machine Learning Research, 6:1453–1484, 2005.

[TPNT07] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Major components of the
gravity recommendation system. SIGKDD Explorations Newsletter, 9(2):80–
83, 2007.

[Vap95] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[Vap98] Vladimir Vapnik. Statistical Learning Theory. John Wiley and Sons, New
York, 1998.

[VGS97] Vladimir Vapnik, Steven E. Golowich, and Alexander J. Smola. Support
vector method for function approximation, regression estimation, and sig-
nal processing. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems 9, pages 281–287, Cam-
bridge, MA, 1997. MIT Press.

[VNC03] Salvatore Valenti, Francesca Neri, and Alessandro Cucchiarelli. An
overview of current research on automated essay grading. Journal of In-
formation Technology Education, 2:319–329, 2003.

[Voo01] E. Voorhees. Overview of the TRECT 2001 question answering track. In
TREC, 2001.

[WDA+09] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and
Alexander J. Smola. Feature hashing for large scale multitask learning. In
Proceedings of International Conference on Machine Learning (ICML), 2009.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, San Francisco, 2 edition, 2005.

[WG07] Markus Weimer and Iryna Gurevych. Predicting the perceived quality of
web forum posts. In Proceedings of the Conference on Recent Advances in Nat-
ural Language Processing (RANLP), pages 643–648, 2007.

[WGM07] Markus Weimer, Iryna Gurevych, and Max Mühlhäuser. Automatically as-
sessing the post quality in online discussions on software. In Proceedings of

145

Bibliography

the 45th Annual Meeting of the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster Sessions, pages 125–128,
Prague, Czech Republic, June 2007. Association for Computational Lin-
guistics.

[WKB09] Markus Weimer, Alexandros Karatzoglou, and Marcel Bruch. Maximum
margin code recommendation. In RecSys ’09: Proceedings of the 2009 ACM
conference on Recommender systems (to appear), 2009.

[WKLS08] Markus Weimer, Alexandros Karatzoglou, Quoc Viet Le, and Alexander J.
Smola. Cofi rank - maximum margin matrix factorization for collaborative
ranking. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems 20, pages 1593–1600. MIT Press,
Cambridge, MA, 2008.

[WKS08a] Markus Weimer, Alexandros Karatzoglou, and Alexander J. Smola. Adap-
tive collaborative filtering. In RecSys ’08: Proceedings of the 2008 ACM con-
ference on Recommender systems, pages 275–282, New York, NY, USA, 2008.
ACM.

[WKS08b] Markus Weimer, Alexandros Karatzoglou, and Alexander J. Smola. Im-
proving maximum margin matrix factorization. In Walter Daelemans, Bart
Goethals, and Katharina Morik, editors, Machine Learning and Knowledge
Discovery in Databases, volume 5211 of LNAI, pages 14–14. Springer, 2008.

[WKS08c] Markus Weimer, Alexandros Karatzoglou, and Alexander J. Smola.
Improving maximum margin matrix factorization. Machine Learning,
72(3):263–276, 2008.

[WZL07] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting
object usage anomalies. In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 35–44. ACM Press,
2007.

[XP06] Tao Xie and Jian Pei. MAPO: mining api usages from open source reposi-
tories. In Proceedings of the International Workshop on Mining Software Repos-
itories, pages 54–57. ACM Press, 2006.

[YC07] Kai Yu and Wei Chu. Gaussian process models for link analysis and trans-
fer learning. In Advances in Neural Information Processing Systems 20, Cam-
bridge, MA, 2007. MIT Press.

[YFR00] Yunwen Ye, Gerhard Fischer, and Brent Reeves. Integrating active informa-
tion delivery and reuse repository systems. In Proceedings of the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
60–68. ACM Press, 2000.

146

Bibliography

[YVGS08] Jin Yu, S. V. N. Vishwanathan, Simon Günter, and Nicol N. Schraudolph.
A quasi-newton approach to non-smooth convex optimization. In ICML
’08: Proceedings of the 25th international conference on Machine learning, pages
1216–1223, New York, NY, USA, 2008. ACM.

[YYTK06] Shipeng Yu, Kai Yu, Volker Tresp, and Hans-Peter Kriegel. Collaborative
ordinal regression. In ICML ’06: Proceedings of the 23rd international con-
ference on Machine learning, pages 1089–1096, New York, NY, USA, 2006.
ACM.

[ZDLZ07] Zhongyuan Zhang, C. Ding, Tao Li, and Xiangsun Zhang. Binary matrix
factorization with applications. In Data Mining, 2007. ICDM 2007. Seventh
IEEE International Conference on, pages 391–400, 2007.

[ZWS09] Andreas Zinnen, Christian Wojek, and Bernt Schiele. Multi activity recog-
nition based on bodymodel-derived primitives. In Proceedings of the 4th In-
ternational Symposium on Location and Context Awareness (LoCA), May 2009.

147

Bibliography

148

	Introduction
	Motivation: The need for Machine Teaching
	Approach taken
	Organization of this Thesis
	Contributions of this Thesis

	The Machine Teaching Approach
	Preliminaries: A Brief Introduction to Machine Learning
	Machine Learning Problems
	Machine Learning Models
	Machine Learning Methods
	The Kernel Trick

	Introducing Machine Teaching
	Definition
	High-Level Example of a Machine Teaching Scenario
	Machine Teaching Properties
	Machine Teaching Assumptions

	Major Components of a Machine Teaching System
	Dynamics of a Machine Teaching System
	Focus of this Thesis

	General Feedback Machine Teaching
	Detailed Feedback Machine Teaching
	Conclusion

	General Feedback Machine Teaching for Web Forum Authors
	Introduction
	Example domain

	State of the Art
	Automatic Essay Scoring
	Data Characteristics
	Feature Inspirations

	Feature Engineering
	Surface Features
	Lexical Features
	Syntactic Features
	Forum Specific Features
	Similarity features

	Evaluation Procedure
	Data Set and Pre-processing
	Method

	Evaluation Results and Discussion
	Results
	Performance Analysis

	Conclusion

	Generalized Matrix Factorization
	Introduction
	State of the Art
	Regularized Matrix Factorization
	Loss Functions
	Element Based Loss Functions
	Row Based Loss Functions
	A faster Ordinal Regression Loss Function
	An NDCG Loss Function for Matrix Factorization
	Conclusion

	Optimization
	Optimization over the Row Matrix R
	Optimization over the Row Matrix C
	New Row Optimization

	Extensions to the Regularized Matrix Factorization Model
	Row and Column Biases
	Adaptive Regularization
	Structure Exploitation with a Graph Kernel
	Row and Column Features

	Conclusion

	Evaluation on Recommender Systems Data
	Evaluation Setup
	Evaluation Measures
	Evaluation Procedure
	Data Sets

	Results and Discussion
	Model Extensions
	Ranking Losses

	Conclusion

	Detailed Feedback Machine Teaching for Software Engineers
	Introduction
	Application Domain: Programming with Frameworks

	Related Work
	Matrix Factorization Modeling
	Evaluation Setup
	Method
	Data Set
	Baseline System

	Evaluation Results and Discussion
	Conclusion

	Conclusions
	Summary
	Future Work

	Bibliography

