Markus Weimer
About Home Automation Publications
  • This list is not updated frequently enough. You can find many of my more recent works on arxiv.org
  • PerfGuard: deploying ML-for-systems without performance regressions, almost!

    Remmelt Ammerlaan, Gilbert Antonius, Marc Friedman, H M Sajjad Hossain, Alekh Jindal, Peter Orenberg, Hiren Patel, Shi Qiao, Vijay Ramani, Lucas Rosenblatt, Abhishek Roy, Irene Shaffer, Soundarajan Srinivasan, Markus Weimer

  • FLAML: A Fast and Lightweight AutoML Library

    Chi Wang, Qingyun Wu, Markus Weimer, Erkang Zhu

  • A Tensor Compiler for Unified Machine Learning Prediction Serving

    Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino, Markus Weimer, Matteo Interlandi

  • Building Continuous Integration Services for Machine Learning

    Bojan Karlaš, Matteo Interlandi, Cedric Renggli, Wentao Wu, Ce Zhang, Deepak Mukunthu Iyappan Babu, Jordan Edwards, Chris Lauren, Andy Xu, Markus Weimer

  • Vamsa: Automated Provenance Tracking in Data Science Scripts

    Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru Krishnan, Ashvin Agrawal, Yinghui Wu, Yiwen Zhu, Markus Weimer

  • MLOS: An Infrastructure for Automated Software Performance Engineering

    Carlo Curino, Neha Godwal, Brian Kroth, Sergiy Kuryata, Greg Lapinski, Siqi Liu, Slava Oks, Olga Poppe, Adam Smiechowski, Ed Thayer, Markus Weimer, Yiwen Zhu

  • Cloudy with high chance of DBMS: a 10-year prediction for Enterprise-Grade ML

    Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Gowdal, Matteo Interlandi, Alekh Jindal, Konstantinos Karanasos, Subru Krishnan, Brian Kroth, Jyoti Leeka, Kwanghyun Park, Hiren Patel, Olga Poppe, Fotis Psallidas, Raghu Ramakrishnan, Abhishek Roy, Karla Saur, Rathijit Sen, Markus Weimer, Travis Wright, Yiwen Zhu

  • Extending Relational Query Processing with ML Inference

    Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen, Kwanghyun Park, Ivan Popivanov, Supun Nakandal, Subru Krishnan, Markus Weimer, Yuan Yu, Raghu Ramakrishnan, Carlo Curino

  • MLSys: The New Frontier of Machine Learning Systems

    Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar

  • From the Edge to the Cloud: Model Serving in ML.NET

    Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Markus Weimer, Matteo Interlandi

  • PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems

    Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio, Markus Weimer, Matteo Interlandi

  • Batch-Expansion Training: An Efficient Optimization Framework

    Michal Derezinski, Dhruv Mahajan, S. Sathiya Keerthi, S. V. N. Vishwanathan, Markus Weimer

  • Towards Geo-Distributed Machine Learning

    Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino, Giovanni Matteo Fumarola, Arvind Krishnamurthy

  • Towards High-Performance Prediction Serving Systems

    Yunseong Lee, Alberto Scolari, Matteo Interlandi, Markus Weimer, Byung-Gon Chun

  • Apache REEF: Retainable Evaluator Execution Framework

    Byung-Gon Chun, Tyson Condie, Yingda Chen, Brian Cho, Andrew Chung, Carlo Curino, Chris Douglas, Matteo Interlandi, Beomyeol Jeon, Joo Seong Jeong, Gyewon Lee, Yunseong Lee, Tony Majestro, Dahlia Malkhi, Sergiy Matusevych, Brandon Myers, Mariia Mykhailova, Shravan Narayanamurthy, Joseph Noor, Raghu Ramakrishnan, Sriram Rao, Russell Sears, Beysim Sezgin, Taegeon Um, Julia Wang, Markus Weimer, Youngseok Yang

  • Salmon: Towards Production-Grade, Platform-Independent Distributed ML

    Mikhail Bilenko, Tom Finley, Shon Katzenberger, Sebastian Kochman, Dhruv Mahajan, Shravan Narayanamurthy, Julia Wang, Shizhen Wang, Markus Weimer

  • Dolphin: Runtime Optimization for Distributed Machine Learning

    Byung-Gon Chun, Brian Cho, Beomyeol Jeon, Joo Seong Jeong, Gunhee Kim, Joo Yeon Kim, Woo-Yeon Lee, Yun Seong Lee, Markus Weimer, Youngseok Yang, Gyeong-In Yu

  • Towards Geo-Distributed Machine Learning

    Ignacio Cano, Markus Weimer, Dhruv Mahajan, Carlo Curino and Giovanni Matteo Fumarola

  • REEF: Retainable Evaluator Execution Framework

    Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson Condie, Carlo Curino, Chris Douglas, Yunseong Lee, Tony Majestro, Dahlia Malkhi , Sergiy Matusevych, Brandon Myers, Shravan Narayanamurthy, Raghu Ramakrishnan, Sriram Rao, Russell Sears, Beysim Sezgin, Julia Wang

  • Elastic Distributed Bayesian Collaborative Filtering

    Alex Beutel, Markus Weimer, Tom Minka, Yordan Zaykov, Vijay Narayanan

  • Towards Resource-Elastic Machine Learning

    Shravan Narayanamurthy, Markus Weimer, Dhruv Mahajan, Tyson Condie, Sundararajan Sellamanickam, Keerthi Selvaraj

  • Distributed and Scalable PCA in the Cloud

    Arun Kumar, Nikos Karampatziakis, Paul Mineiro, Markus Weimer and Vijay Narayanan

  • Declarative Systems for Large-Scale Machine Learning

    Vinayak Borkar, Yingyi Bu, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis, Tyson Condie, Markus Weimer and Raghu Ramakrishnan

  • WWW 2012 Tutorial: New Templates for Scalable Data Analysis

    Alex Smola, Amr Ahmed, Markus Weimer

  • Machine learning in ScalOps, a higher order cloud computing language

    Markus Weimer, Tyson Condie and Raghu Ramakrishnan

  • The Yahoo! Music Dataset and KDD-Cup’11

    Gideon Dror, Noam Koenigstein, Yehuda Koren, Markus Weimer

  • A Convenient Framework for Efficient Parallel Multipass Algorithms

    Markus Weimer, Sriram Rao, Martin Zinkevich

  • Parallelized Stochastic Gradient Descent

    Martin Zinkevich, Markus Weimer, Alex Smola, Lihong Li

  • Quantile Matrix Factorization for Collaborative Filtering

    Alexandros Karatzoglou, Markus Weimer

  • Collaborative Filtering on a Budget

    Alexandros Karatzoglou, Alex Smola, Markus Weimer

  • Machine Teaching -- A Machine Learning Approach to Technology Enhanced Learning

    Markus Weimer

  • Maximum margin matrix factorization for code recommendation

    Markus Weimer, Alexandros Karatzoglou and Marcel Bruch

  • Adaptive Collaborative Filtering

    Markus Weimer, Alexandros Karatzoglou and Alexander J. Smola

  • Improving Maximum Margin Matrix Factorization

    Markus Weimer, Alexandros Karatzoglou and Alexander J. Smola

  • CofiRank - Maximum Margin Matrix Factorization for Collaborative Ranking

    Markus Weimer, Alexandros Karatzoglou, Quoc Viet Le, Alex Smola

Markus Weimer

  • Markus Weimer
  • website@weimo.de
  • subscribe via RSS
  • markusweimer
  • Mastodon

Building intelligent machines, one gradient at a time.